
9/27/2016

1

CSE373: Data Structures and Algorithms
Introduction; ADTs; Stacks/Queues

Steve Tanimoto
Autumn 2016

This lecture material represents the work of multiple instructors at the University of Washington,
most recently, Prof. L. Shaprio. Thank you to all who have contributed!

Registration
• We have 175 students registered and more waiting!
• If you’re thinking of dropping the course please decide soon!

Waitlisted students
• If you don’t absolutely have to take the course this quarter, it’s

unlikely you’ll get in.
• If you think you absolutely have to take the course this quarter,

fill out the course overload application online at
http://tinyurl.com/zlarys2

• Make a note of the code that I give out in class. Do not make
this public or share it with those who have not attended class
today. The CSE undergraduate advisors will decide who gets
added to the course.

I will not make individual decisions about registration!
CSE 373 Autumn 2016 2

Welcome!
We have 10 weeks to learn fundamental data structures and

algorithms for organizing and processing information
– “Classic” data structures / algorithms
– How to rigorously analyze their efficiency
– How to decide when to use them
– Queues, dictionaries, graphs, sorting, etc.

Today in class:
• Introductions and course mechanics
• What this course is about
• Start abstract data types (ADTs), stacks, and queues

– Largely review (?!)

CSE 373 Autumn 2016 3

To-do list
In next 24-48 hours:
• Adjust class email-list and Catalyst GoPost settings
• Read all course policies
• Set up your Java environment for Assignment 1
• Answer the background survey questions. (Participation credit is

available on this through Friday only.)
• Read Chapters 3.1 (lists), 3.6 (stacks) and 3.7 (queues) of the

Weiss book; it's relevant to Assignment 1, due next week

• Bookmark our course web page.
http://courses.cs.washington.edu/courses/cse373/16au/

CSE 373 Autumn 2016 4

Course instructor

CSE 373 Autumn 2016

Office hours, email, etc. on course web-page

Steve Tanimoto
UW CSE faculty member. My research is on the
design of tools to support collaborative problem
solving. My interests also include livecoding, visual
programming, image processing, AI, and computers
in music and education.
My early research was on data structures and
algorithms applied to graphical information and
images (e.g., pyramids, octrees, region-adjacency
graphs, transforms).

5

Teaching Assistants

CSE 373 Autumn 2016

Office hours, email, etc. on course web-page

6

9/27/2016

2

Communication
• Course email list: cse373b_au16@u.washington.edu

– Students and staff already subscribed
– You must get announcements sent there
– Fairly low traffic

• Course staff: cse373-staff@cs.washington.edu plus
individual emails

• Discussion board
– For appropriate discussions; TAs will monitor
– Encouraged, but won’t use for important announcements

• Instructor feedback link
– For good and bad: but please be gentle.

CSE 373 Autumn 2016 7

Course meetings
• Lecture (Steve)

– Materials posted, but take notes
– Ask questions, focus on key ideas (rarely coding details)

• Sections on Thursdays
– Tentative agenda available on the calendar
– Help on programming/tool background
– Example problems
– Occasional quizzes

• Office hours
– Use them: please visit me
– Ideally not just for homework questions (but that’s great too)

CSE 373 Autumn 2016 8

Roles of Java and Pseudocode
• Java: Programming assignments. A few

lecture illustrations.
• Pseudocode : Lecture examples of algorithm

descriptions. Quizzes and exams.

CSE 373 Autumn 2016 9

Course materials
• All lecture and section materials will be posted

– But they are visual aids, not always a complete
description!

– If you have to miss, find out what you missed
• Textbook: Mark Allen Weiss: Data Structures and

Algorithms in Java, 3rd ed. Online readings will be
used to supplement lecture material.

• A good Java reference of your choosing
– Don’t struggle Googling for features you don’t

understand
• Constantly skipping class is not good for your grade.

CSE 373 Autumn 2016 10

Computing Facilities
• College of Arts & Sciences Instructional Computing Lab

– http://depts.washington.edu/aslab/
– Or your own machine

• We'll use Java 8 for the programming assignments.
• Eclipse (Neon release) is our recommended programming environment

CSE 373 Autumn 2016 11

Coursework and Assessment
• 6 Assignments (45%)

– Most involve programming, but some have written questions
– Higher-level concepts than “just code it up”
– First programming assignment due Friday, October 7.

• Participation (15%)
– Worksheets
– Questionnaires
– Quizzes
– Section activities.

• Midterm Monday November 7, in class (15%)
• Final exam: Tuesday December 13, 2:30-4:20PM (25%)

CSE 373 Autumn 2016 12

9/27/2016

3

Collaboration and Academic Integrity
• Read the course policy very carefully

– Explains quite clearly how you can and cannot get/provide
help on homework and projects

• Always explain any unconventional action on your part
– When it happens, when you submit, not when asked

• The CSE department and I take academic integrity extremely
seriously
– I offer great trust but with little sympathy for violations
– Honest work is a vital feature of a university

• IF YOU’RE NOT SURE, THEN ASK!
CSE 373 Autumn 2016 13

Some details
• You are expected to do your own work.

– Exceptions (group work), if any, will be clearly announced
• Sharing solutions, doing work for, or accepting work from others is cheating.
• Referring to solutions from this or other courses from previous quarters is cheating.
• But you can learn from each other: see the policy.

CSE 373 Autumn 2016 14

Advice on how to succeed in 373
• Get to class on time!

– I will start and end promptly.
– First 2 minutes are much more important than last 2!

• Learn this stuff
– It is at the absolute core of computing and software.
– Falling behind only makes more work for you.

• Do the work and try hard.

• This stuff is powerful and fascinating, so have fun with it!

CSE 373 Autumn 2016 15

Today in Class
• Course mechanics: Did I forget anything?

• What this course is about

• Start abstract data types (ADTs), stacks, and queues
– Largely review

CSE 373 Autumn 2016 16

Let’s see some art …

17CSE 373 Autumn 2016

Data structures and the architecture of buildings are analogous.

What this course will cover
• Introduction to Algorithm Analysis
• Lists, Stacks, Queues
• Trees, Hashing, Dictionaries
• Heaps, Priority Queues
• Sorting
• Disjoint Sets
• Graph Algorithms
• Algorithm Paradigms and NP-Completeness
• Introduction to Parallelism and Concurrency (Time Permitting)

CSE 373 Autumn 2016 18

9/27/2016

4

Let’s see some more art…

19CSE 373 Autumn 2016 20CSE 373 Autumn 2016

Assumed background
• Prerequisite is CSE143

• Topics you should have a basic understanding of:
– Variables, conditionals, loops, methods, fundamentals of defining classes and inheritance, arrays, single linked lists, simple binary trees, recursion, some sorting and searching algorithms, basic algorithm analysis (e.g., O(n) vs O(n2) and similar things)

• We can fill in gaps as needed, but if any topics are new, plan on some extra studying

CSE 373 Autumn 2016 21

Goals
• Deeply understand the basic structures used in all software

– Understand the data structures and their trade-offs
– Rigorously analyze the algorithms that use them (math!)
– Learn how to pick “the right thing for the job”
– More thorough and rigorous take on topics introduced in

CSE143 (plus more new topics)

• Practice design, analysis, and implementation
– The mix of “theory” and “engineering” at the core of

computer science

• More programming experience (as a way to learn)

CSE 373 Autumn 2016 22

Goals
• Be able to make good design choices as a developer, project

manager, etc.
– Reason in terms of the general abstractions that come up in

all non-trivial software (and many non-software) systems
• Be able to justify and communicate your design decisions

You will learn the key abstractions used almost every day in just
about anything related to computing and software.

CSE 373 Autumn 2016 23 24CSE 373 Autumn 2016

Let’s start!

9/27/2016

5

Data structures
A data structure is a (often non-obvious) way to organize

information to enable efficient computation over that information
A data structure supports certain operations, each with a:

– Meaning: what does the operation do/return
– Performance: how efficient is the operation

Examples:
– List with operations insert and delete
– Stack with operations push and pop

CSE 373 Autumn 2016 25

Trade-offs
A data structure strives to provide many useful, efficient operations

But there are unavoidable trade-offs:
– Time vs. space
– One operation more efficient if another less efficient
– Generality vs. simplicity vs. performance

We ask ourselves questions like:
– Does this support the operations I need efficiently?
– Will it be easy to use (and reuse), implement, and debug?
– What assumptions am I making about how my software will

be used? (E.g., more lookups or more inserts?)

CSE 373 Autumn 2016 26

Terminology
• Abstract Data Type (ADT)

– Mathematical description of some possible groups of data items,
with a set of operations on these groups.

– Not concerned with implementation details
• Algorithm

– A high level, language-independent description of a step-by-step
process for working with information

• Data structure
– A specific organization of data and family of algorithms for

implementing an ADT
• Implementation of a data structure

– A specific implementation in a specific programming language
CSE 373 Autumn 2016 27

Example: Stacks
• The Stack ADT supports operations:

– isEmpty: have there been same number of pops as pushes
– push: takes an item
– pop: raises an error if empty, else returns most-recently

pushed item not yet returned by a pop
– … (possibly more operations)

• A Stack data structure could use a linked-list or an array or
something else, and associated algorithms for the operations

• One implementation is in the library java.util.Stack

CSE 373 Autumn 2016 28

The Stack ADT
Operations:

create
destroy
push
pop
top
is_empty

Can be implemented with an array or a linked list
– Like queues, type of elements is irrelevant

CSE 373 Autumn 2016

A

B
C
D
E
F

E D C B A

F

29

Why useful
The Stack ADT is a useful abstraction because:
• It arises frequently in programming

– Recursive function calls
– Balancing symbols in programming (parentheses)
– Evaluating postfix notation: 3 4 + 5 *
– Clever: Infix ((3+4) * 5) to postfix conversion (see text)

• We can code up a reusable library

• We can communicate in high-level terms
– “Use a stack and push numbers, popping for operators…”
– Rather than, “create an array and keep indices to the…”

CSE 373 Autumn 2016 30

9/27/2016

6

The Queue ADT
• Operations

create
destroy
enqueue
dequeue
is_empty

• Just like a stack except:
– Stack: LIFO (last-in-first-out)
– Queue: FIFO (first-in-first-out)

• Just as useful and ubiquitous

CSE 373 Autumn 2016

F E D C Benqueue dequeueG A

Back Front

31 32CSE 373 Autumn 2016

Stacks vs. Queues

Stack Queue

Circular Array Queue Data Structure

33CSE 373 Autumn 2016

// Basic idea only!
enqueue(x) {

next = (back + 1) % size
Q[next] = x;
back = next

}
// Basic idea only!
dequeue() {

x = Q[front];
front = (front + 1) % size;
return x;

}

b c d e f
Q: 0 size - 1

front back
• What if queue is empty?

– Enqueue?
yes

– Dequeue?
no

• What if array is full?
– Enqueue?

no
– Dequeue

yes

next
x

Circular Array Example (text p 94 has
another one)

34CSE 373 Autumn 2016

enqueue(‘g’)
o1 = dequeue()
b
o2 = dequeue()
c
o3 = dequeue()
d

o4 = dequeue()
e
o5 = dequeue()
f
o6 = dequeue()
g

INOUT
g

Now where
are back
and front?

front

Now
front =
back+1!

Empty Queue
• Will front = back + 1 always be true for an empty

queue?

35CSE 373 Autumn 2016

back front
-1 0

0 0

4 0
‘a’

‘a’ ‘b’ ‘c’ ‘d’ ‘e’

back front
4 4

4 0
‘a’ ‘b’ ‘c’ ‘d’ ‘e’

‘a’ ‘b’ ‘c’ ‘d’ ‘e’

front = (back + 1) % arraysize
0 = 5 % 5

Circular Queue
• When we add an ‘f’ to the queue that has only the ‘e’,

back will go around to position zero. back=(4+1)%5

36CSE 373 Autumn 2016

back front
-1 0

0 0

4 0
‘a’

‘a’ ‘b’ ‘c’ ‘d’ ‘e’

back front
4 4

0 4
‘a’ ‘b’ ‘c’ ‘d’ ‘e’

‘f’ ‘b’ ‘c’ ‘d’ ‘e’

9/27/2016

7

Complexity of Circular Queue Operations

Spring 2016 37CSE 373: Data Structures & Algorithms

// Basic idea only!
enqueue(x) {

next = (back + 1) % size
Q[next] = x;
back = next

}

// Basic idea only!
dequeue() {

x = Q[front];
front = (front + 1) % size;
return x;

}

O(1)
constant

O(1)
constant

Linked List Queue Data Structure

38CSE 373 Autumn 2016

b c d e f
front back

// Basic idea only!
enqueue(x) {

back.next = new Node(x);
back = back.next;

}
// Basic idea only!
dequeue() {

x = front.item;
front = front.next;
return x;

}

• What if queue is empty?
– Enqueue?
– Dequeue?

• Can list be full?
• How to test for empty?
• front=back=null
• What is the complexity of

the operations?
• O(1)

yesnono

Circular Array vs. Linked List for Queues
Array:
– May waste unneeded space or

run out of space
– Space per element excellent
– Operations very simple / fast
– Constant-time access to kth

element

– For operation insertAtPosition,
must shift all later elements
– Not in Queue ADT

List:
– Always just enough space
– But more space per element
– Operations very simple / fast
– No constant-time access to kth

element

– For operation insertAtPosition
must traverse all earlier elements
– Not in Queue ADT

39CSE 373 Autumn 2016

This is stuff you should know after being awakened
in the dark

Conclusion
• Abstract data structures allow us to define a new data type and

its operations.

• Each abstraction will have one or more implementations.

• Which implementation to use depends on the application, the
expected operations, the memory and time requirements.

• Both stacks and queues have array and linked implementations.

• We’ll look at other ordered-queue implementations later.

CSE 373 Autumn 2016 40

