Priority Queue ADT

- A **priority queue** holds *compare-able* items
- Each item in the priority queue has a “**priority**” and “**data**”
 - In our examples, the *lesser* item is the one with the *greater* priority
 - So “priority 1” is *more important* than “priority 4”

- Operations:
 - **insert**: *adds* an element to the priority queue
 - **deleteMin**: *returns* and *deletes* the item with greatest priority (min)
 - **is_empty**

- Our data structure: A **binary min-heap** (or **binary heap** or **heap**) has:
 - Structure property: A *complete* binary tree
 - Heap property: The priority of every (non-root) node is less important than (>) the priority of its parent (**Not a binary search tree**
Operations: basic idea

• **deleteMin**:
 1. Remove root node
 2. Move right-most node in last row to root to restore structure property
 3. “Percolate down” to restore heap property

• **insert**:
 1. Put new node in next position on bottom row to restore structure property
 2. “Percolate up” to restore heap property

Overall strategy:
• *Preserve structure property*
• *Break and restore heap property*
DeleteMin

Delete (and later return) value at root node

```
1
/  \
4   3
/ \
7  5
/ \
9 6
/ \
11 9 10
```

Winter 2015 CSE 373 Data Structures & Algorithms
DeleteMin: Keep the Structure Property

- We now have a “hole” at the root
 - Need to fill the hole with another value
- Keep structure property: When we are done, the tree will have one less node and must still be complete
- Pick the last node on the bottom row of the tree and move it to the “hole”
DeleteMin: Restore the Heap Property

Percolate down:
- Keep comparing priority of item with both children
- If priority is less important, swap with the most important child and go down one level
- Done if both children are less important than the item or we’ve reached a leaf node

Run time?
Runtime is \(O(\text{height of heap}) \)
Height of a complete binary tree of \(n \) nodes = \(\lceil \log_2(n) \rceil \)
Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct
Insert: Maintain the Structure Property

• There is only one valid tree shape after we add one more node

• So put our new data there and then focus on restoring the heap property
Insert: Restore the heap property

Percolate up:
- Put new data in new location
- If parent is less important, swap with parent, and continue
- Done if parent is more important than item or reached root

What is the running time?
Like \texttt{deleteMin}, worst-case time proportional to tree height: $O(\log n)$
Array Representation of Binary Trees

From node i:
- left child: $i \times 2$
- right child: $i \times 2 + 1$
- parent: $i / 2$

(wasting index 0 is convenient for the index arithmetic)

implicit (array) implementation:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
Judging the array implementation

Plusses:
• Non-data space: just index 0 and unused space on right
 – In conventional tree representation, one edge per node
 (except for root), so \(n-1\) wasted space (like linked lists)
 – Array would waste more space if tree were not complete
• Multiplying and dividing by 2 is very fast (shift operations in hardware)
• Last used position is just index \textbf{size}

Minuses:
• Same might-be-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”
This pseudocode uses ints. In real use, you will have data nodes with priorities.

Pseudocode: insert into binary heap

```python
void insert(int val) {
    if(size==arr.length-1)
        resize();
    size++;
    i=percolateUp(size,val);
    arr[i] = val;
}

int percolateUp(int hole, int val) {
    while(hole > 1 &&
        val < arr[hole/2])
        arr[hole] = arr[hole/2];
        hole = hole / 2;
    return hole;
}
```

This pseudocode uses ints. In real use, you will have data nodes with priorities.
Pseudocode: deleteMin from binary heap

```c
int deleteMin() {
    if(isEmpty()) throw...
    ans = arr[1];
    hole = percolateDown (1,arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}
```

```c
int percolateDown(int hole, int val) {

    while(2*hole <= size) {
        left  = 2*hole;
        right = left + 1;
        if(right > size ||
           arr[left] < arr[right])
            target = left;
        else
            target = right;
        if(arr[target] < val) {
            arr[hole] = arr[target];
            hole = target;
        } else
            break;
    }
    return hole;
}
```
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

```
0  1  2  3  4  5  6  7
4  32 16
```

```
4
 /  \
32 16
```

Winter 2015 CSE 373 Data Structures & Algorithms
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>32</th>
<th>4</th>
<th>67</th>
<th>105</th>
<th>43</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

```
  2
 / 
32 4
|   |
67 105
|   |
43 16
```
Other operations

• **decreaseKey**: given pointer to object in priority queue (e.g., its array index), lower its priority value by \(p \)
 – Change priority and percolate up

• **increaseKey**: given pointer to object in priority queue (e.g., its array index), raise its priority value by \(p \)
 – Change priority and percolate down

• **remove**: given pointer to object in priority queue (e.g., its array index), remove it from the queue
 – **decreaseKey** with \(p = \infty \), then **deleteMin**

Running time for all these operations?
Build Heap

- Suppose you have n items to put in a new (empty) priority queue
 - Call this operation \texttt{buildHeap}

- n \texttt{inserts} works
 - Only choice if ADT doesn’t provide \texttt{buildHeap} explicitly
 - $O(n \log n)$

- Why would an ADT provide this unnecessary operation?
 - Convenience
 - Efficiency: an $O(n)$ algorithm called Floyd’s Method
 - Common issue in ADT design: how many specialized operations
Floyd’s Method

1. Use n items to make any complete tree you want
 - That is, put them in array indices 1,…,n

2. Treat it as a heap and fix the heap-order property
 - Bottom-up: leaves are already in heap order, work up toward the root one level at a time

```c
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val  = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```
Example

- In tree form for readability
 - Purple for node not less than descendants
 - heap-order problem
 - Notice no leaves are purple
 - Check/fix each non-leaf bottom-up (6 steps here)
Example

- Happens to already be less than children (er, child)
Example

Step 2

• Percolate down (notice that moves 1 up)
Example

- Another nothing-to-do step
Example

- Percolate down as necessary (steps 4a and 4b)
Example

Step 5
Example
But is it right?

• “Seems to work”
 – Let’s prove it restores the heap property (correctness)
 – Then let’s prove its running time (efficiency)

```c
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val  = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```
Correctness

```java
void buildHeap() {
    for (i = size/2; i > 0; i--) {
        val = arr[i];
        hole = percolateDown(i, val);
        arr[hole] = val;
    }
}
```

Loop Invariant: For all \(j > i \), \(arr[j] \) is less than its children

- True initially: If \(j > \text{size}/2 \), then \(j \) is a leaf
 - Otherwise its left child would be at position \(> \text{size} \)
- True after one more iteration: loop body and \text{percolateDown}
 make \(arr[i] \) less than children without breaking the property for any descendants

So after the loop finishes, all nodes are less than their children
Efficiency

```java
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Easy argument: `buildHeap` is $O(n \log n)$ where n is `size`

- `size/2` loop iterations
- Each iteration does one `percolateDown`, each is $O(\log n)$

This is correct, but there is a more precise (“tighter”) analysis of the algorithm…
Efficiency

void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}

Better argument: buildHeap is $O(n)$ where n is size

- size/2 total loop iterations: $O(n)$
- 1/2 the loop iterations percolate at most 1 step
- 1/4 the loop iterations percolate at most 2 steps
- 1/8 the loop iterations percolate at most 3 steps
- ...
- \[
 \left(\frac{1}{2}\right) + \left(\frac{2}{4}\right) + \left(\frac{3}{8}\right) + \left(\frac{4}{16}\right) + \left(\frac{5}{32}\right) + \ldots \right) < 2 \quad \text{(page 4 of Weiss)}
\]
 - So at most $2 \times \frac{\text{size}}{2}$ total percolate steps: $O(n)$
Lessons from buildHeap

• Without buildHeap, our ADT already let clients implement their own in $O(n \log n)$ worst case

• By providing a specialized operation internal to the data structure (with access to the internal data), we can do $O(n)$ worst case
 – Intuition: Most data is near a leaf, so better to percolate down

• Can analyze this algorithm for:
 – Correctness:
 • Non-trivial inductive proof using loop invariant
 – Efficiency:
 • First analysis easily proved it was $O(n \log n)$
 • Tighter analysis shows same algorithm is $O(n)$