CSE373: Data Structures & Algorithms
Lecture 8: AVL Trees and Priority Queues

Linda Shapiro
Winter 2015
Announcements

• Homework 3 is out.

• Today
 – Finish AVL Trees
 – Start Priority Queues
The **AVL Tree** Data Structure

An AVL tree is a self-balancing binary search tree.

Structural properties

1. **Binary tree** property (same as BST)
2. **Order** property (same as for BST)
3. **Balance property:**
 - balance of every node is between -1 and 1

Need to keep track of height of every node and maintain balance as we perform operations.
AVL Trees: Insert

- Insert as in a BST (add a leaf in appropriate position)
- Check back up path for imbalance, which will be 1 of 4 cases:
 1. Unbalanced node’s left-left grandchild is too tall
 2. Unbalanced node’s left-right grandchild is too tall
 3. Unbalanced node’s right-left grandchild is too tall
 4. Unbalanced node’s right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallest-unbalanced subtree has the same height as before the insertion
 – So all ancestors are now balanced
AVL Trees: Single rotation

- **Single rotation:**
 - The basic operation we’ll use to rebalance an AVL Tree
 - Move child of unbalanced node into parent position
 - Parent becomes the “other” child (always okay in a BST!)
 - Other sub-trees move in only way BST allows
The general left-left case

- Insertion into left-left grandchild causes an imbalance at node a
 - Move child of unbalanced node into parent position
 - Parent becomes the “other” child
 - Other sub-trees move in the only way BST allows:
 - using BST facts: X < b < Y < a < Z

- A single rotation restores balance at the node
 - To same height as before insertion, so ancestors now balanced
The general right-right case

- Mirror image to left-left case, so you rotate the other way
 - Exact same concept, but need different code
The general right-left case
Comments

• Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert
 – So no ancestor in the tree will need rebalancing
• Does not have to be implemented as two rotations; can just do:

- Easier to remember than you may think:
 Move c to grandparent’s position
 Put a, b, X, U, V, and Z in the only legal positions for a BST
The general left-right case

- Mirror image of right-left
 - Again, no new concepts, only new code to write
Insert into an AVL tree: a b e c d
Insert 3

Insert(3)

Unbalanced?
Insert 33

Insert(33)

Unbalanced?

How to fix?
Insert 33: Single Rotation
Insert 18

Insert(18)

Unbalanced?

How to fix?
Insert 18: Double Rotation (Step #1)
Insert 18: Double Rotation (Step #2)
Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always balanced
2. Height balancing adds no more than a constant factor to the speed of \texttt{insert} and \texttt{delete}

Arguments against AVL trees:

1. More difficult to program & debug [but done once in a library!]
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. If \textit{amortized} (later) logarithmic time is enough, use splay trees (in the text)
Done with AVL Trees

next up…

Priority Queues ADT
A new ADT: Priority Queue

- A priority queue holds *compare-able data*
 - Like dictionaries, we need to *compare items*
 - Given x and y, is x less than, equal to, or greater than y
 - Meaning of the ordering can depend on your data
 - Integers are comparable, so will use them in examples
 - But the priority queue ADT is much more general
 - Typically two fields, the *priority* and the *data*
Priorities

• Each item has a “priority”
 – In our examples, the lesser item is the one with the greater priority
 – So “priority 1” is more important than “priority 4”
 – (Just a convention, think “first is best”)

• Operations:
 – insert
 – deleteMin
 – is_empty

• Key property: deleteMin returns and deletes the item with greatest priority (lowest priority value)
 – Can resolve ties arbitrarily
Example

insert x1 with priority 5
insert x2 with priority 3
insert x3 with priority 4

a = deleteMin // x2
b = deleteMin // x3

insert x4 with priority 2
insert x5 with priority 6

c = deleteMin // x4
d = deleteMin // x1

• Analogy: insert is like \texttt{enqueue}, deleteMin is like \texttt{dequeue}
 – But the whole point is to use priorities instead of FIFO
Applications

Like all good ADTs, the priority queue arises often
 – Sometimes blatant, sometimes less obvious

• Run multiple programs in the operating system
 – “critical” before “interactive” before “compute-intensive”
 – Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)

• Select print jobs in order of decreasing length?

• Forward network packets in order of urgency

• Select most frequent symbols for data compression

• Sort (first \texttt{insert} all, then repeatedly \texttt{deleteMin})
 – Much like Homework 1 uses a stack to implement reverse
Finding a good data structure

• Will show an efficient, non-obvious data structure for this ADT
 – But first let’s analyze some “obvious” ideas for n data items
 – All times worst-case; assume arrays “have room”

<table>
<thead>
<tr>
<th>data</th>
<th>insert algorithm / time</th>
<th>deleteMin algorithm / time</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted array</td>
<td>add at end</td>
<td>O(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unsorted linked list</td>
<td>add at front</td>
<td>O(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sorted circular array</td>
<td>search / shift</td>
<td>O(n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sorted linked list</td>
<td>put in right place</td>
<td>O(n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search tree</td>
<td>put in right place</td>
<td>O(n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVL tree</td>
<td>put in right place</td>
<td>O(\log n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Our data structure: the Binary Heap

A binary min-heap (or just binary heap or just heap) has:

- **Structure property:** A complete binary tree
- **Heap property:** The priority of every (non-root) node is less than the priority of its parent
 - *Not a binary search tree*

So:

- Where is the most important item?
- What is the height of a heap with n items?
Operations: basic idea

- **findMin**: return root.data
- **deleteMin**:
 1. answer = root.data
 2. Move right-most node in last row to root to restore structure property
 3. “Percolate down” to restore heap property
- **insert**:
 1. Put new node in next position on bottom row to restore structure property
 2. “Percolate up” to restore heap property

Overall strategy:
- Preserve structure property
- Break and restore heap property
DeleteMin

Delete (and later return) value at root node

```
   1
  / \   / \
 4   3 /   \ 
/ \ /\ /  \ /  \
7  5 8   9
/ \ /  \ /  \  
11 9 6 10
```
DeleteMin: Keep the Structure Property

- We now have a “hole” at the root
 - Need to fill the hole with another value

- **Keep structure property:** When we are done, the tree will have one less node and must still be complete

- Pick the last node on the bottom row of the tree and move it to the “hole”
DeleteMin: Restore the Heap Property

Percolate down:

- Keep comparing priority of item with both children
- If priority is less important (>) than either, swap with the most important (smaller) child and go down one level
- Done if both children are less important (>) than the item or we’ve reached a leaf node

Why is this correct?
What is the run time?
DeleteMin: Run Time Analysis

• Run time is $O(\text{height of heap})$

• A heap is a complete binary tree

• Height of a complete binary tree of n nodes?
 – height = $\lceil \log_2(n) \rceil$

• Run time of `deleteMin` is $O(\log n)$
Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct
Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property
Insert: Restore the heap property

Percolate up:
- Put new data in new location
- If parent is less important (>), swap with parent, and continue
- Done if parent is more important (<) than item or reached root

What is the running time?
Like deleteMin, worst-case time proportional to tree height: $O(\log n)$
Summary

• Priority Queue ADT:
 – **insert** comparable object,
 – **deleteMin**

• Binary heap data structure:
 – Complete binary tree
 – Each node has less important priority value than its parent

• **insert** and **deleteMin** operations = $O($height-of-tree$)=O(\log n)$
 – **insert**: put at new last position in tree and percolate-up
 – **deleteMin**: remove root, put last element at root and percolate-down