CSE373: Data Structures & Algorithms
Lecture 6: Binary Search Trees

Linda Shapiro
Winter 2015
Announcements

• HW2 due start of class Wednesday January 21
Previously

– Dictionary ADT
 • stores (key, value) pairs
 • find, insert, delete

– Trees
 • Terminology
 • Binary Trees
Reminder: Tree terminology

Node / Vertex

Left subtree

Edges

Root

Right subtree

Leaves
Example Tree Calculations

Recall: **Height** of a tree is the **maximum** number of edges from the **root** to a **leaf**.

What is the **height** of this tree?

- Height = 0
- Height = 1

What is the **depth** of node G?

- Depth = 2

What is the **depth** of node L?

- Depth = 4
Binary Trees

- **Binary tree**: Each node has at most 2 children (branching factor 2)

- Binary tree is
 - A root *(with data)*
 - A left subtree *(may be empty)*
 - A right subtree *(may be empty)*

- Special Cases

 ![Complete Tree](image1)
 ![Perfect Tree](image2)
 ![Full Tree](image3)

What is full?
Every node has 0 or 2 children.
Tree Traversals

A *traversal* is an order for visiting all the nodes of a tree

- **Pre-order**: root, left subtree, right subtree

 \[+ \ * \ 2 \ 4 \ 5 \]

- **In-order**: left subtree, root, right subtree

 \[2 \ * \ 4 \ + \ 5 \]

- **Post-order**: left subtree, right subtree, root

 \[2 \ 4 \ * \ 5 \ + \]
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- A = current node
- A = processing (on the call stack)
- A = completed node
- ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

A = current node
A = processing (on the call stack)
A = completed node
✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t){
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- A = current node
- A = processing (on the call stack)
- A = completed node
- ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

A = current node A = processing (on the call stack)
A = completed node ✓ = element has been processed
void inOrderTraversal(Node t) {
 if (t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

A = current node A = processing (on the call stack)
A = completed node ✓ = element has been processed

D B
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

A = current node A = processing (on the call stack)
A = completed node ✓ = element has been processed

D B E
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- **A** = current node
- **A** = processing (on the call stack)
- **A** = completed node
- ✓ = element has been processed

```
D B E A
```
void inOrderTraversal(Node t) {
 if (t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

= current node = processing (on the call stack)
= completed node ✓ = element has been processed

D B E A
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

= current node
= processing (on the call stack)
= completed node
✓ = element has been processed

D B E A F C
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- **A** = current node
- **A** = processing (on the call stack)
- **A** = completed node
- ✓ = element has been processed

D B E A F C G
More on traversals

```java
void inOrderTraversal(Node t){
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

Sometimes order doesn’t matter
- Example: sum all elements

Sometimes order matters
- Example: evaluate an expression tree
Binary Search Tree (BST) Data Structure

• Structure property (binary tree)
 – Each node has ≤ 2 children
 – Result: keeps operations simple

• Order property
 – All keys in left subtree smaller than node’s key
 – All keys in right subtree larger than node’s key
 – Result: easy to find any given key

A binary search tree is a type of binary tree (but not all binary trees are binary search trees!)
Are these BSTs? Activity! What nodes violate the BST properties?
Find in BST, Recursive

```
Data find(Key key, Node root){
    if(root == null)
        return null;
    if(key < root.key)
        return find(key,root.left);
    if(key > root.key)
        return find(key,root.right);
    return root.data;
}
```

What is the time complexity? Worst case.

Worst case running time is $O(n)$.
- Happens if the tree is very lopsided (e.g. list)
Find in BST, Iterative

Data `find(Key key, Node root){
 while(root != null && root.key != key) {
 if(key < root.key)
 root = root.left;
 else(key > root.key)
 root = root.right;
 }
 if(root == null)
 return null;
 return root.data;
}

Worst case running time is O(n).
- Happens if the tree is very lopsided (e.g. list)
Bonus: Other BST “Finding” Operations

- **FindMin**: Find *minimum* node
 - Left-most node

- **FindMax**: Find *maximum* node
 - Right-most node

How would we implement?
Insert in BST

Again… worst case running time is $O(n)$, which may happen if the tree is not balanced.
Deletion in BST

Why might deletion be harder than insertion?
Removing an item may disrupt the tree structure!
Deletion in BST

- Basic idea: find the node to be removed, then “fix” the tree so that it is still a binary search tree

- Three potential cases to fix:
 - Node has no children (leaf)
 - Node has one child
 - Node has two children
Deletion – The Leaf Case

delte(17)
Deletion – The One Child Case

delete(15)
Deletion – The One Child Case

delete(15)
Deletion – The Two Child Case

```plaintext
delete(5)
```

What can we replace 5 with?
Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:

• **successor** minimum node from right subtree
 \[\text{findMin}(\text{node.right}) \] *the text does this*

• **predecessor** maximum node from left subtree
 \[\text{findMax}(\text{node.left}) \]

Now delete the original node containing **successor** or **predecessor**
Deletion: The Two Child Case (example)

delete(23)

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```

```
        12
       /  \
       5   23
      /  \
     2    9
    /  \
   7    10
```
Deletion: The Two Child Case (example)

delete(23)
Deletion: The Two Child Case (example)

delete(23)
Deletion: The Two Child Case (example)

delete(23)

Success! 😊
Lazy Deletion

- Lazy deletion can work well for a BST
 - Simpler
 - Can do “real deletions” later as a batch
 - Some inserts can just “undelete” a tree node

- But
 - Can waste space and slow down find operations
 - Make some operations more complicated:
 - e.g., `findMin` and `findMax`?
BuildTree for BST

• Let’s consider `buildTree`
 – Insert all, starting from an empty tree

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
 – If inserted in given order, what is the tree?
 – What big-O runtime for this kind of sorted input?
 \[
 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}
 \]
 \[O(n^2)\]
 Not a happy place
 – Is inserting in the reverse order any better?
BuildTree for BST

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

- What if we could somehow re-arrange them
 - median first, then left median, right median, etc.
 - 5, 3, 7, 2, 1, 4, 8, 6, 9

 - What tree does that give us?

 - What big-O runtime?

 \[O(n \log n), \text{ definitely better}\]

 - So the order the values come in is important!
Complexity of Building a Binary Search Tree

• Worst case: $O(n^2)$

• Best case: $O(n \log n)$

• We do better by keeping the tree balanced.