CSE373: Data Structures & Algorithms
Lecture 5: Dictionary ADTs; Binary Trees

Linda Shapiro
Winter 2015
Today’s Outline

Announcements
- Homework 1 due TODAY at 11:59 pm 😊
- Homework 2 out (paper and pencil assignment)
 - Due in class Wednesday Jan. 21 at the START of class

Today’s Topics
• Finish Asymptotic Analysis
• Dictionary ADT (a.k.a. Map): associate keys with values
 – Extremely common
• Binary Trees
Summary of Asymptotic Analysis

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
 - Or power or dollars or …
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper)

- The most common thing we will do is give an O upper bound to the worst-case running time of an algorithm.
Big-Oh Caveats

• Asymptotic complexity focuses on behavior for large n and is independent of any computer / coding trick

• But you can “abuse” it to be misled about trade-offs

• Example: $n^{1/10}$ vs. $\log n$
 – Asymptotically $n^{1/10}$ grows more quickly
 – But the “cross-over” point is around 5×10^{17}
 – So if you have input size less than 2^{58}, prefer $n^{1/10}$

• For small n, an algorithm with worse asymptotic complexity might be faster
 – If you care about performance for small n then the constant factors can matter
Addendum: Timing vs. Big-Oh Summary

• Big-oh is an essential part of computer science’s mathematical foundation
 – Examine the algorithm itself, not the implementation
 – Reason about (even prove) performance as a function of n

• Timing also has its place
 – Compare implementations
 – Focus on data sets you care about (versus worst case)
 – Determine what the constant factors “really are”
Let’s take a breath

- So far we’ve covered
 - Some simple ADTs: stacks, queues, lists
 - Some math (proof by induction)
 - How to analyze algorithms
 - Asymptotic notation (Big-Oh)

- Coming up….
 - Many more ADTs
 - Starting with dictionaries
The Dictionary (a.k.a. Map) ADT

- Data:
 - set of (key, value) pairs
 - keys must be comparable

- Operations:
 - `insert(key, value)`
 - `find(key)`
 - `delete(key)`
 - ...

Will tend to emphasize the keys; don’t forget about the stored values

```plaintext
• eden
  Eden Ghirmai
  OH: Fri 4.30-5.20
  ...

• rama
  Rama Gokhale
  OH: Fri 1.30-2.20
  ...

• megan
  Megan Hopp
  OH: Mon 10:30-11:20
  ...
```

Winter 2015 CSE 373 Algorithms and Data Structures
Any time you want to store information according to some key and be able to retrieve it efficiently – Lots of programs do that!

- Search: inverted indexes, phone directories, …
- Networks: router tables
- Operating systems: page tables
- Compilers: symbol tables
- Databases: dictionaries with other nice properties
- Biology: genome maps
- …

Possibly the most widely used ADT
Simple implementations

For dictionary with n key/value pairs

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>find</th>
<th>delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted linked-list</td>
<td>$O(1)^*$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Unsorted array</td>
<td>$O(1)^*$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted linked list</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

* Unless we need to check for duplicates

We’ll see a Binary Search Tree (BST) probably does better but not in the worst case (unless we keep it balanced)
Lazy Deletion

A general technique for making \texttt{delete} as fast as \texttt{find}:

- Instead of actually removing the item just mark it deleted

Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses:

- Extra \textit{space} for the “is-it-deleted” flag
- Data structure full of deleted nodes wastes \textit{space}
- May complicate other operations
There are many good data structures for (large) dictionaries

1. Binary trees
2. AVL trees
 – Binary search trees with *guaranteed balancing*
3. B-Trees
 – Also always balanced, but different and shallower
 – B-Trees are not the same as Binary Trees
 • B-Trees generally have large branching factor
4. Hash Tables
 – Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)
Tree terms (review?)

- **Root** (tree)
- **Leaves** (tree)
- **Children** (node)
- **Parent** (node)
- **Siblings** (node)
- **Ancestors** (node)
- **Descendants** (node)
- **Subtree** (node)

Depth (node)

Height (tree)

Degree (node)

Branching factor (tree)
More tree terms

- There are many kinds of trees
 - Every binary tree is a tree
 - Every list is kind of a tree (think of “next” as the one child)

- There are many kinds of binary trees
 - Every binary search tree is a binary tree
 - Later: A binary heap is a different kind of binary tree

- A tree can be balanced or not
 - A balanced tree with n nodes has a height of $O(\log n)$
 - Different tree data structures have different “balance conditions” to achieve this
Kinds of trees

Certain terms define trees with specific structure

- **Binary tree**: Each node has at most 2 children (branching factor 2)
- **n-ary tree**: Each node has at most n children (branching factor n)
- **Perfect tree**: Each row completely full
- **Complete tree**: Each row completely full except maybe the bottom row, which is filled from left to right

What is the height of a perfect binary tree with n nodes?
A complete binary tree?
Binary Trees

- Binary tree: Each node has at most 2 children (branching factor 2)

- Binary tree is
 - A root *(with data)*
 - A left subtree that’s a binary tree
 - A right subtree that’s a binary tree

- These subtrees may be empty.

- Representation:

<table>
<thead>
<tr>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>left pointer</td>
</tr>
</tbody>
</table>

- For a dictionary, data will include a key and a value
Binary Tree Representation

```
  A
 /   \
B     C
|
D     E
|
F
```

```
A
 /   \
B     C
 /     \
D     E
 /     \
F
```
Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
- max # of leaves: 2^h
- max # of nodes: $2^{(h + 1)} - 1$
- min # of leaves: 1
- min # of nodes: $h + 1$

For n nodes, we cannot do better than $O(\log n)$ height and we want to avoid $O(n)$ height
Calculating height

What is the height of a tree with root \texttt{root}?

```java
int treeHeight(Node root) {
    ???
}
```
Calculating height

What is the height of a tree with root `root`?

```java
int treeHeight(Node root) {
    if (root == null)
        return -1;
    return 1 + max(treeHeight(root.left),
                    treeHeight(root.right));
}
```

Running time for tree with `n` nodes: $O(n)$ – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes; much easier to use recursion’s call stack
Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- **Pre-order:** root, left subtree, right subtree

 \[+ \times 2 4 5 \]

- **In-order:** left subtree, root, right subtree

 \[2 \times 4 + 5 \]

- **Post-order:** left subtree, right subtree, root

 \[2 4 \times 5 + \]

(an expression tree)
void inOrderTraversal(Node t) {
 if (t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}
More on traversals

```java
void inorderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- A = current node
- A = processing (on the call stack)
- A = completed node
- ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

A = current node A = processing (on the call stack)

A = completed node ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- **A** = current node
- **A** = processing (on the call stack)
- **A** = completed node
- ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- **A** = current node
- **A** = processing (on the call stack)
- **A** = completed node
- ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- **A** = current node
- **A** = processing (on the call stack)
- **A** = completed node
- ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- **A** = current node
- **A** = processing (on the call stack)
- **A** = completed node
- ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

= current node = processing (on the call stack)
= completed node ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

\(A\) = current node \(\text{A} \) = processing (on the call stack)

\(A\) = completed node \(✓\) = element has been processed
More on traversals

void inOrderTraversal(Node t)
{
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

= current node = processing (on the call stack)
= completed node ✓ = element has been processed