CSE373: Data Structures and Algorithms

Lecture 4: Asymptotic Analysis

Linda Shapiro
Winter 2015
Efficiency

- What does it mean for an algorithm to be efficient?
 - We primarily care about *time* (and sometimes *space*)
- Is the following a good definition?
 - “An algorithm is efficient if, when implemented, it runs *quickly* on *real* input instances”
 - What does “quickly” mean?
 - What constitutes “real input?”
 - How does the algorithm *scale* as input size changes?
Gauging efficiency (performance)

• Uh, why not just run the program and time it?
 – Too much variability, not reliable or portable:
 • Hardware: processor(s), memory, etc.
 • OS, Java version, libraries, drivers
 • Other programs running
 • Implementation dependent
 – Choice of input
 • Testing (inexhaustive) may miss worst-case input
 • Timing does not explain relative timing among inputs (what happens when n doubles in size)
 • Often want to evaluate an algorithm, not an implementation
 – Even before creating the implementation ("coding it up")
Comparing algorithms

When is one *algorithm* (not *implementation*) better than another?

 – Various possible answers (clarity, security, …)

 – But a big one is *performance*: for sufficiently large inputs, runs in less time (our focus) or less space

We will focus on large inputs because probably any algorithm is “plenty good” for small inputs (if n is 10, probably anything is fast)

 – Time difference really shows up as n grows

Answer will be *independent* of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up and timing it on some test cases”

 - Can do analysis before coding!
We usually care about worst-case running times

- Has proven reasonable in practice
 - Provides some guarantees
- Difficult to find a satisfactory alternative
 - What about average case?
 - Difficult to express full range of input
 - Could we use randomly-generated input?
 - May learn more about generator than algorithm
Example

Find an integer in a *sorted* array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    ???
}
```
Linear search

Find an integer in a sorted array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    for (int i = 0; i < arr.length; ++i)
        if (arr[i] == k)
            return true;
    return false;
}
```

Best case?
- k is in arr[0]
- c₁ steps
- $O(1)$

Worst case?
- k is not in arr
- $O(2 \times \text{arr.length})$
- $O(\text{arr.length})$
Binary search

Find an integer in a sorted array

- Can also be done non-recursively but “doesn’t matter” here

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi + lo) / 2; // i.e., lo+(hi-lo)/2
    if (lo == hi) return false;
    if (arr[mid] == k) return true;
    if (arr[mid] < k) return help(arr, k, mid + 1, hi);
    else return help(arr, k, lo, mid);
}
```
Binary search

Best case: \(c_1 \) steps = \(O(1) \)
Worst case: \(T(n) = c_2 \) steps + \(T(n/2) \) where \(n \) is \(hi-lo \)
 - \(O(\log n) \) where \(n \) is \texttt{array.length}
 - Solve \textit{recurrence equation} to know that...

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k){
    return help(arr,k,0,arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr,k,mid+1,hi);
    else return help(arr,k,lo,mid);
}
```
Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
 - \(T(n) = c_2 + T(n/2) \quad T(1) = c_1 \) first eqn.

2. “Expand” the original relation to find an equivalent general expression \textit{in terms of the number of expansions}.
 - \(T(n) = c_2 + c_2 + T(n/4) \) 2nd eqn.
 - \(= c_2 + c_2 + c_2 + T(n/8) \) 3rd eqn.
 - \(= \ldots \)
 - \(= c_2(k) + T(n/(2^k)) \) kth eqn.

3. Find a closed-form expression by setting \textit{the number of expansions} to a value (e.g. 1) which reduces the problem to a base case
 - \(n/(2^k) = 1 \) means \(n = 2^k \) means \(k = \log_2 n \)
 - So \(T(n) = c_2 \log_2 n + T(1) \)
 - So \(T(n) = c_2 \log_2 n + c_1 \) (get to base case and do it)
 - So \(T(n) \) is \(O(\log n) \)
Ignoring constant factors

• So binary search is $O(\log n)$ and linear search is $O(n)$
 – But which is faster?

• Could depend on constant factors
 – How many assignments, additions, etc. for each n
 • E.g. $T(n) = 5,000,000n$ vs. $T(n) = 5n^2$
 – And could depend on overhead unrelated to n
 • E.g. $T(n) = 5,000,000 + \log n$ vs. $T(n) = 10 + n$

• But there exists some n_0 such that for all $n > n_0$ binary search wins

• Let’s play with a couple plots to get some intuition…
Example

- Let’s try to “help” linear search
 - Run it on a computer 100x as fast (say 2015 model vs. 1994)
 - Use a new compiler/language that is 3x as fast
 - Be a clever programmer to eliminate half the work
 - So doing each iteration is 600x as fast as in binary search
Big-Oh relates functions

We use O on a function $f(n)$ (for example n^2) to mean the set of functions with asymptotic behavior less than or equal to $f(n)$

So $(3n^2+17)$ is in $O(n^2)$
- $3n^2+17$ and n^2 have the same asymptotic behavior

Confusingly, we also say/write:
- $(3n^2+17)$ is $O(n^2)$
- $(3n^2+17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$
Big-O, formally

Definition: $g(n)$ is in $O(f(n))$ if there exist positive constants c and n_0 such that

$$g(n) \leq c \cdot f(n) \quad \text{for all } n \geq n_0$$

- To show $g(n)$ is in $O(f(n))$, pick a c large enough to “cover the constant factors” and n_0 large enough to “cover the lower-order terms”
 - Example: Let $g(n) = 3n^2+17$ and $f(n) = n^2$
 - $c=5$ and $n_0=10$ is more than good enough
 - $(3 \cdot 10^2)+17 \leq 5 \cdot 10^2$ so $3n^2+17$ is $O(n^2)$
- This is “less than or equal to”
 - So $3n^2+17$ is also $O(n^5)$ and $O(2^n)$ etc.
 - But usually we’re interested in the **tightest** upper bound.
Example 1, using formal definition

Let \(g(n) = 1000n \) and \(f(n) = n \)

- To prove \(g(n) \) is in \(O(f(n)) \), find a valid \(c \) and \(n_0 \)
- We can just let \(c = 1000 \).
- That works for any \(n_0 \), such as \(n_0 = 1 \).
- \(g(n) = 1000n \leq c f(n) = 1000n \) for all \(n \geq 1 \).

Definition: \(g(n) \) is in \(O(f(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that

\[
g(n) \leq c f(n) \quad \text{for all } n \geq n_0
\]
Example 1’, using formal definition

• Let \(g(n) = 1000n \) and \(f(n) = n^2 \)
 – To prove \(g(n) \) is in \(O(f(n)) \), find a valid \(c \) and \(n_0 \)
 – The “cross-over point” is \(n=1000 \)
 • \(g(n) = 1000*1000 \) and \(f(n) = 1000^2 \)
 – So we can choose \(n_0=1000 \) and \(c=1 \)
 – Then \(g(n) = 1000n \leq c f(n) = 1n^2 \) for all \(n \geq 1000 \)

Definition: \(g(n) \) is in \(O(f(n)) \) if there exist
positive constants \(c \) and \(n_0 \) such that

\[
g(n) \leq c f(n) \quad \text{for all } n \geq n_0
\]
Examples 1 and 1’

• Which is it?
• Is $g(n) = 1000n$ called $f(n)$ or $f(n^2)$?

• By definition, it can be either one.
• We prefer to use the smallest one.
Example 2, using formal definition

- Let $g(n) = n^4$ and $f(n) = 2^n$
 - To prove $g(n)$ is in $O(f(n))$, find a valid c and n_0
 - We can choose $n_0=20$ and $c=1$
 - $g(n) = 20^4$ vs. $f(n) = 1*2^{20}$
 - $g(n) = n^4 \leq c f(n) = 1*2^n$ for all $n \geq 20$
 - If I were doing a complexity analysis, would I pick $O(2^n)$?

Definition: $g(n)$ is in $O(f(n))$ if there exist positive constants c and n_0 such that

$$g(n) \leq c f(n) \quad \text{for all } n \geq n_0$$
Comparison

<table>
<thead>
<tr>
<th>n</th>
<th>n^4</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10,000</td>
<td>1,024</td>
</tr>
<tr>
<td>20</td>
<td>160,000</td>
<td>1,048,576</td>
</tr>
<tr>
<td>30</td>
<td>810,000</td>
<td>1,073,741,824</td>
</tr>
<tr>
<td>40</td>
<td>2,560,000</td>
<td>1.0995x10^{12}</td>
</tr>
</tbody>
</table>
What's with the c

- The constant multiplier c is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity.
- Consider:

\[
g(n) = 7n + 5 \\
f(n) = n
\]

- These have the same asymptotic behavior (linear).
 - So $g(n)$ is in $O(f(n))$ even through $g(n)$ is always larger.
 - The c allows us to provide a coefficient so that $g(n) \leq c f(n)$.

- In this example:
 - To prove $g(n)$ is in $O(f(n))$, have $c = 12$, $n_0 = 1$

 \[(7*1)+5 \leq 12*1\]
What you can drop

• Eliminate coefficients because we don’t have units anyway
 – $3n^2$ versus $5n^2$ doesn’t mean anything when we have not specified the cost of constant-time operations
 – Both are $O(n^2)$

• Eliminate low-order terms because they have vanishingly small impact as n grows
 – $5n^5 + 40n^4 + 30n^3 + 20n^2 + 10^n + 1$ is ?
 – $O(n^5)$

• Do NOT ignore constants that are not multipliers
 – n^3 is not $O(n^2)$
 – 3^n is not $O(2^n)$
Upper and Lower Bounds

$f_1(x)$ is an upper bound for $g(x)$; $f_2(x)$ is a lower bound. $g(x) \leq f_1(x)$ and $g(x) \geq f_2(x)$.

![Graph showing upper and lower bounds](image_url)
More Asymptotic* Notation

*approaching arbitrarily closely

- **Upper bound:** $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
 - $g(n)$ is in $O(f(n))$ if there exist constants c and n_0 such that $g(n) \leq c f(n)$ for all $n \geq n_0$

- **Lower bound:** $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
 - $g(n)$ is in $\Omega(f(n))$ if there exist constants c and n_0 such that $g(n) \geq c f(n)$ for all $n \geq n_0$

- **Tight bound:** $\theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$
 - $g(n)$ is in $\theta(f(n))$ if both $g(n)$ is in $O(f(n))$ and $g(n)$ is in $\Omega(f(n))$
Correct terms, in theory

A common error is to say $O(f(n))$ when you mean $\theta(f(n))$

– Since a linear algorithm is also $O(n^5)$, it’s tempting to say “this algorithm is exactly $O(n)$”
– That doesn’t mean anything, say it is $\theta(n)$
– That means that it is not, for example $O(\log n)$

Less common notation:

– “little-oh”: intersection of “big-Oh” and not “big-Theta”
 • For all c, there exists an n_0 such that… \leq
 • Example: array sum is $O(n)$ and $o(n^2)$ but not $o(n)$
– “little-omega”: intersection of “big-Omega” and not “big-Theta”
 • For all c, there exists an n_0 such that… \geq
 • Example: array sum is $O(n)$ and $\omega(\log n)$ but not $\omega(n)$
What we are analyzing: Complexity

• The most common thing to do is give an O upper bound to the worst-case running time of an algorithm

• Example: binary-search algorithm
 – Common: $O(\log n)$ running-time in the worst-case
 – Less common: $\theta(1)$ in the best-case (item is in the middle)
 – Less common (but very good to know): the find-in-sorted-array problem is $\Omega(\log n)$ in the worst-case (lower bound)
 • No algorithm can do better
 • A problem cannot be $O(f(n))$ since you can always make a slower algorithm
Other things to analyze

• Space instead of time
 – Remember we can often use space to gain time

• Average case
 – Sometimes only if you assume something about the probability distribution of inputs
 – Sometimes uses randomization in the algorithm
 • Will see an example with sorting
 – Sometimes an amortized guarantee
 • Average time over any sequence of operations
Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
 - Or power or dollars or …
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)
Addendum: Timing vs. Big-Oh Summary

• Big-oh is an essential part of computer science’s mathematical foundation
 – Examine the algorithm itself, not the implementation
 – Reason about (even prove) performance as a function of n

• Timing also has its place
 – Compare implementations
 – Focus on data sets you care about (versus worst case)
 – Determine what the constant factors “really are”