Announcements
Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. **Merge sort:**
 - Sort the left half of the elements (recursively)
 - Sort the right half of the elements (recursively)
 - Merge the two sorted halves into a sorted whole

2. **Quick sort:**
 - Pick a “pivot” element
 - Divide elements into less-than pivot and greater-than pivot
 - Sort the two divisions (recursively on each)
 - Answer is sorted-less-than then pivot then sorted-greater-than
Quick sort

• A divide-and-conquer algorithm
 – Recursively chop into two pieces
 – Instead of doing all the work as we merge together, we will do all the work as we recursively split into halves
 – Unlike merge sort, does not need auxiliary space

• $O(n \log n)$ on average ☺, but $O(n^2)$ worst-case ☹

• Faster than merge sort in practice?
 – Often believed so
 – Does fewer copies and more comparisons, so it depends on the relative cost of these two operations!
Quicksort Overview

1. Pick a pivot element

2. Partition all the data into:
 A. The elements less than the pivot
 B. The pivot
 C. The elements greater than the pivot

3. Recursively sort A and C

4. The answer is, “as simple as A, B, C”
Think in Terms of Sets

S

13 81 43 31 57 75 0

S1

13 43 31 57 26 0

S2

81 92 75 65

S1

13 43 31 57 26 0

S2

81 92 75 65

Quicksort(S1) and Quicksort(S2)

Presto! S is sorted

[Weiss]
Example, Showing Recursion
Details

Have not yet explained:

• How to pick the pivot element
 – Any choice is correct: data will end up sorted
 – But as analysis will show, want the two partitions to be about equal in size

• How to implement partitioning
 – In linear time
 – In place
Pivots

- Best pivot?
 - Median
 - Halve each time

- Worst pivot?
 - Greatest/least element
 - Problem of size n - 1
 - $O(n^2)$
Potential pivot rules

While sorting \texttt{arr} from \texttt{lo} to \texttt{hi-1} …

- Pick \texttt{arr[lo]} or \texttt{arr[hi-1]}
 - Fast, but worst-case occurs with mostly sorted input

- Pick random element in the range
 - Does as well as any technique, but (pseudo)random number generation can be slow
 - Still probably the most elegant approach

- Median of 3, e.g., \texttt{arr[lo]}, \texttt{arr[hi-1]}, \texttt{arr[(hi+lo)/2]}
 - Common heuristic that tends to work well
Partitioning

• Conceptually simple, but hardest part to code up correctly
 – After picking pivot, need to partition in linear time in place

• One approach (there are slightly fancier ones):
 1. Swap pivot with \(arr[lo] \)
 2. Use two pointers \(i \) and \(j \), starting at \(lo+1 \) and \(hi-1 \)
 3. \(\text{while } (i < j) \)
 \(\text{if } (arr[j] > \text{pivot}) \ j-- \)
 \(\text{else if } (arr[i] < \text{pivot}) \ i++ \)
 \(\text{else swap } arr[i] \ \text{with } arr[j] \)
 4. Swap pivot with \(arr[i] \)

*skip step 4 if pivot ends up being least element
Example

• Step one: pick pivot as median of 3
 – $lo = 0$, $hi = 10$

```
0 1 2 3 4 5 6 7 8 9
8 1 4 9 0 3 5 2 7 6
```

• Step two: move pivot to the lo position

```
0 1 2 3 4 5 6 7 8 9
6 1 4 9 0 3 5 2 7 8
```
Example

Now partition in place

Move pointers

Swap

Move pointers

Move pivot

Often have more than one swap during partition – this is a short example
Quick sort visualization

Analysis

• Best-case: Pivot is always the median
 \[T(0) = T(1) = 1 \]
 \[T(n) = 2T(n/2) + n \]
 -- linear-time partition
 Same recurrence as merge sort: \(O(n \log n) \)

• Worst-case: Pivot is always smallest or largest element
 \[T(0) = T(1) = 1 \]
 \[T(n) = 1T(n-1) + n \]
 Basically same recurrence as selection sort: \(O(n^2) \)

• Average-case (e.g., with random pivot)
 – \(O(n \log n) \), not responsible for proof (in text)
Cutoffs

• For small n, all that recursion tends to cost more than doing a quadratic sort
 – Remember asymptotic complexity is for large n

• Common engineering technique: switch algorithm below a cutoff
 – Reasonable rule of thumb: use insertion sort for $n < 10$

• Notes:
 – Could also use a cutoff for merge sort
 – Cutoffs are also the norm with parallel algorithms
 • Switch to sequential algorithm
 – None of this affects asymptotic complexity
How Fast Can We Sort?

• Heapsort & mergesort have $O(n \log n)$ worst-case running time

• Quicksort has $O(n \log n)$ average-case running time

• These bounds are all tight, actually $\Theta(n \log n)$

• Comparison sorting in general is $\Omega(n \log n)$
 – An amazing computer-science result: proves all the clever programming in the world cannot comparison-sort in linear time
The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Simple algorithms: $O(n^2)$
- Insertion sort
- Selection sort
- Shell sort
...

Fancier algorithms: $O(n \log n)$
- Heap sort
- Merge sort
- Quick sort (avg)
...

Comparison lower bound: $\Omega(n \log n)$

Specialized algorithms: $O(n)$
- Bucket sort
- Radix sort

Handling huge data sets
- External sorting

How???
- Change the model – assume more than “compare(a,b)”
Bucket Sort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range):
 - Create an array of size K
 - Put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

• Example:
 - $K=5$
 - input (5,1,3,4,3,2,1,1,5,4,5)
 - output: 1,1,1,2,3,3,4,4,5,5,5
Visualization

Analyzing Bucket Sort

- Overall: \(O(n+K) \)
 - Linear in \(n \), but also linear in \(K \)
 - \(\Omega(n \log n) \) lower bound does not apply because this is not a comparison sort

- Good when \(K \) is smaller (or not much larger) than \(n \)
 - We don’t spend time doing comparisons of duplicates

- Bad when \(K \) is much larger than \(n \)
 - Wasted space; wasted time during linear \(O(K) \) pass

- For data in addition to integer keys, use list at each bucket
Bucket Sort with Data

What does this look like?

• Most real lists aren’t just keys; we have data
• Each bucket is a list (say, linked list)
• To add to a bucket, insert in $O(1)$ (at beginning, or keep pointer to last element)

<table>
<thead>
<tr>
<th>count array</th>
<th>Rocky V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Harry Potter</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Casablanca Star Wars</td>
</tr>
</tbody>
</table>

• Example: Movie ratings; scale 1-5; 1=bad, 5=excellent

Input=

5: Casablanca
3: Harry Potter movies
5: Star Wars Original Trilogy
1: Rocky V

• Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
• Easy to keep ‘stable’; Casablanca still before Star Wars
Sorting massive data

- Need sorting algorithms that minimize disk/tape access time:
 - Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
 - Merge sort scans linearly through arrays, leading to (relatively) efficient sequential disk access

- Merge sort is the basis of massive sorting

- Merge sort can leverage multiple disks
External Merge Sort

- Sort 900 MB using 100 MB RAM
 - Read 100 MB of data into memory
 - Sort using conventional method (e.g. quicksort)
 - Write sorted 100MB to temp file
 - Repeat until all data in sorted chunks ($900/100 = 9$ total)
- Read first 10 MB of each sorted chunk, merge into remaining 10MB
 - writing and reading as necessary
 - Single merge pass instead of $log n$
 - Additional pass helpful if data much larger than memory
- Parallelism and better hardware can improve performance
- Distribution sorts (similar to bucket sort) are also used