CSE 373: Data Structures & Algorithms
Lecture 17: Topological Sort / Graph Traversals

Linda Shapiro
Winter 2015
Announcements
Adjacency Matrix

- Assign each node a number from 0 to $|V| - 1$
- A $|V| \times |V|$ matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then $M[u][v]$ being true means there is an edge from u to v
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- Space requirements:
 - $|V|^2$ bits

- Best for sparse or dense graphs?
 - Best for dense graphs
Adjacency Matrix Properties

• How will the adjacency matrix look for an undirected graph?
 – Undirected will be symmetric around the diagonal

• How can we adapt the representation for weighted graphs?
 – Instead of a Boolean, store a number in each cell
 – Need some value to represent ‘not an edge’

 • In some situations, 0 or -1 works
Adjacent List

- Assign each node a number from 0 to $|V| - 1$
- An array of length $|V|$ in which each entry stores a list of all adjacent vertices (e.g., linked list)
Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges: $O(d)$ where d is out-degree of vertex
 - Get all of a vertex’s in-edges: $O(|E|)$ (but could keep a second adjacency list for this!)
 - Decide if some edge exists: $O(d)$ where d is out-degree of source
 - Insert an edge: $O(1)$ (unless you need to check if it’s there)
 - Delete an edge: $O(d)$ where d is out-degree of source

- Space requirements: $O(|V|+|E|)$
 - Good for sparse graphs
Algorithms

- **Topological sort**: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors.

- **Shortest paths**: Find the shortest or lowest-cost path from x to y.
 - Related: Determine if there even is such a path.
Topological Sort

Problem: Given a DAG $G = (V, E)$, output all vertices in an order such that no vertex appears before another vertex that has an edge to it.

One example output:
126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415
Questions and comments

• Why do we perform topological sorts only on DAGs?
 – Because a cycle means there is no correct answer

• Is there always a unique answer?
 – No, there can be 1 or more answers; depends on the graph

• Do some DAGs have exactly 1 answer?
 – Yes, including all lists

• Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Uses

• Figuring out how to graduate

• Computing an order in which to recompute cells in a spreadsheet

• Determining an order to compile files using a Makefile

• In general, taking a dependency graph and finding an order of execution

• Figuring out how CSE grad students make espresso
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with in-degree of 0
 b) Output \(v \) and mark it removed
 c) For each vertex \(u \) adjacent to \(v \) (i.e. \(u \) such that \((v,u) \) in \(E \)), decrement the in-degree of \(u \)
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?
In-degree: 0 0 2 1 1 1 1 1 1 3
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x

In-degree: 0 0 2 1 1 1 1 1 1 3

126
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x
In-degree: 0 0 2 1 1 1 1 1 1 3

Output:
126
142
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?: x x x
In-degree: 0 0 2 1 1 1 1 1 1 3

Output: 126 142 143
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3

Output: 126
 142
 143
 374
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3

Output: 126 142 143 374 373
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3

Output:
126
142
143
374
373
417
XYZ
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x x x x x x x

In-degree: 0 0 2 1 1 1 1 1 1 1 3

Output: 126 142 143 374 373 410 413 415 417 XYZ
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3

Winter 2015 CSE373: Data Structures & Algorithms
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 1 1 3

Output: 126 142 143 374 373 410 413 415 417 XYZ
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?: x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3

Output:
126
142
143
374
373
410
413
415
XYZ
415

Winter 2015 CSE373: Data Structures & Algorithms
Notice

• Needed a vertex with in-degree 0 to start
 – Will always have at least 1 because no cycles

• Ties among vertices with in-degrees of 0 can be broken arbitrarily
 – Can be more than one correct answer, by definition, depending on the graph
Running time?

labelEachVertexWithItsInDegree();
for (ctr=0; ctr < numVertices; ctr++) {
 v = findNewVertexOfDegreeZero();
 put v next in output
 for each w adjacent to v
 w.indegree--;
}

- What is the worst-case running time?
 - Initialization $O(|V|+|E|)$ (assuming adjacency list)
 - Sum of all find-new-vertex $O(|V|^2)$ (because each $O(|V|)$)
 - Sum of all decrements $O(|E|)$ (assuming adjacency list)
 - So total is $O(|V|^2)$ – not good for a sparse graph!
Doing better

The trick is to avoid searching for a zero-degree node every time!
 – Keep the “pending” zero-degree nodes in a list, stack, queue, bag, table, or something
 – Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) $v =$ dequeue()
 b) Output v and remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), decrement the in-degree of u, if new degree is 0, enqueue it
What is the worst-case running time?
- Initialization: $O(|V| + |E|)$ (assuming adjacency list)
- Sum of all enqueues and dequeues: $O(|V|)$
- Sum of all decrements: $O(|E|)$ (assuming adjacency list)
- So total is $O(|E| + |V|)$ – much better for sparse graph!
Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable from v (i.e., there exists a path from v)
 - Possibly “do something” for each node
 - Examples: print to output, set a field, etc.

• Subsumed problem: Is an undirected graph connected?
• Related but different problem: Is a directed graph strongly connected?
 - Need cycles back to starting node

Basic idea:
 - Keep following nodes
 - But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once
Abstract Idea

```java
traverseGraph(Node start) {
    Set pending = emptySet()
pending.add(start)
mark start as visited
while (pending is not empty) {
    next = pending.remove()
    for each node u adjacent to next
        if (u is not marked) {
            mark u
            pending.add(u)
        }
}
}
```
Running Time and Options

- Assuming add and remove are $O(1)$, entire traversal is $O(|E|)$
 - Use an adjacency list representation

- The order we traverse depends entirely on add and remove
 - Popular choice: a stack “depth-first graph search” “DFS”
 - Popular choice: a queue “breadth-first graph search” “BFS”

- DFS and BFS are “big ideas” in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: explore areas closer to the start node first
Example: Depth First Search (recursive)

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
DFS(Node start) {
    mark and process start
    for each node u adjacent to start
        if u is not marked
            DFS(u)
}
```

- A B D E C F G H
- Exactly what we called a “pre-order traversal” for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once
Example: Another Depth First Search (with stack)

- A tree is a graph and DFS and BFS are particularly easy to “see.”

DFS2(Node start) {
 initialize stack s and push start
 mark start as visited
 while(s is not empty) {
 next = s.pop() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

- A different but perfectly fine traversal, but is this DFS?
- DEPENDS ON THE ORDER YOU PUSH CHILDREN INTO STACK

A C F H G B E D
Example: Breadth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

BFS(Node start) {
 initialize queue q and enqueue start
 mark start as visited
 while (q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if (u is not marked)
 mark u and enqueue onto q
 }
}

- A B C D E F G H
- A “level-order” traversal
Comparison when used for AI Search

• Breadth-first always finds a solution (a path) if one exists and there is enough memory.
• But depth-first can use less space in finding a path
• A third approach:
 – Iterative deepening (IDFS):
 • Try DFS but disallow recursion more than \(k \) levels deep
 • If that fails, increment \(k \) and start the entire search over
 – Like BFS, finds shortest paths. Like DFS, less space.
Saving the Path

• Our graph traversals can answer the reachability question:
 – “Is there a path from node x to node y?”

• But what if we want to actually output the path?
 – Like getting driving directions rather than just knowing it’s possible to get there!

• How to do it:
 – Instead of just “marking” a node, store the previous node along the path (when processing u causes us to add v to the search, set v.path field to be u)
 – When you reach the goal, follow path fields back to where you started (and then reverse the answer)
 – If just wanted path length, could put the integer distance at each node instead
Example using BFS

What is a path from Seattle to Tyler

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique
Harder Problem: Add weights or costs to the graphs.

Find minimal cost paths from a vertex v to all other vertices.

- Driving directions
- Cheap flight itineraries
- Network routing
- Critical paths in project management
Not as easy as BFS

Why BFS won’t work: Shortest path may not have the fewest edges
 – Annoying when this happens with costs of flights

We will assume there are no negative weights
• Problem is ill-defined if there are negative-cost cycles
• Today’s algorithm is wrong if edges can be negative
 – There are other, slower (but not terrible) algorithms
Dijkstra’s Algorithm

• Named after its inventor Edsger Dijkstra (1930-2002)
 – Truly one of the “founders” of computer science; this is just one of his many contributions
 – Many people have a favorite Dijkstra story, even if they never met him

Computer science is no more about computers than astronomy is about telescopes.

(Edsger Dijksta)