CSE373: Data Structures & Algorithms
Lecture 13: Hash Tables

Linda Shapiro
Winter 2015
Announcements
Motivating Hash Tables

For a **dictionary** with n key, value pairs

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>find</th>
<th>delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted linked-list</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Unssorted array</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted linked list</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Balanced tree</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Magic array</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Sufficient “magic”:
- Use key to compute array index for an item in $O(1)$ time
- Have a different index for every item
Hash Tables

- Aim for constant-time (i.e., $O(1)$) **find**, **insert**, and **delete**
 - "On average" under some often-reasonable assumptions
- A hash table is an array of some fixed size
- Basic idea:

 ![Diagram](image)

 key space (e.g., integers, strings) → **hash function**: $\text{index} = h(\text{key})$ → **hash table**

  ```
  TableSize - 1
  0
  ...
  ```
Hash Tables vs. Balanced Trees

- In terms of a Dictionary ADT for just `insert`, `find`, `delete`, hash tables and balanced trees are just different data structures
 - Hash tables $O(1)$ on average (assuming few collisions)
 - Balanced trees $O(\log n)$ worst-case

- Constant-time is better, right?
 - Yes, but you need “hashing to behave” (must avoid collisions)
 - Yes, but `findMin`, `findMax`, `predecessor`, and `successor` go from $O(\log n)$ to $O(n)$, `printSorted` from $O(n)$ to $O(n \log n)$
 - Why your textbook considers this to be a different ADT
Hash Tables

- There are m possible keys (m typically large, even infinite)
- We expect our table to have only n items
- n is much less than m (often written $n \ll m$)

Many dictionaries have this property

- **Compiler**: All possible identifiers allowed by the language vs. those used in some file of one program
- **Database**: All possible student names vs. students enrolled
- **AI**: All possible chess-board configurations vs. those considered by the current player
- …
Hash functions

An ideal hash function:
- Fast to compute
- “Rarely” hashes two “used” keys to the same index
 - Often impossible in theory but easy in practice
 - Will handle collisions in next lecture

key space (e.g., integers, strings)
Collisions

key1

hash to same index

key2
Who hashes what?

• Hash tables can be generic
 – To store elements of type E, we just need E to be:
 1. *Hashable*: convert any E to an int
 2. *Comparable*: order any two E (*only when dictionary*)

• When hash tables are a reusable library, the division of responsibility generally breaks down into two roles:
More on roles

Some ambiguity in terminology on which parts are “hashing”

Two roles must both contribute to minimizing collisions (heuristically)
• Client should aim for different ints for expected items
 – Avoid “wasting” any part of \(E \) or the 32 bits of the int
• Library should aim for putting “similar” ints in different indices
 – Conversion to index is almost always “mod table-size”
 – Using prime numbers for table-size is common
What to hash?

We will focus on the two most common things to hash: ints and strings

- For objects with several fields, usually best to have most of the “identifying fields” contribute to the hash to avoid collisions

- Example:
  ```java
  class Person {
    String first; String middle; String last;
    Date birthdate;
  }
  ```

- An inherent trade-off: hashing-time vs. collision-avoidance
 - Bad idea(?): Use only first name
 - Good idea(?): Use only middle initial
 - Admittedly, what-to-hash-with is often unprincipled 😞
Hashing integers

- key space = integers

Simple hash function:

\[h(key) = key \mod TableSize \]

- Client: \(f(x) = x \)
- Library \(g(x) = x \mod TableSize \)
- Fairly fast and natural

Example:

- \(TableSize = 10 \)
- Insert 7, 18, 41, 34, 10
- (As usual, ignoring data “along for the ride”)

Table:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Hashing integers

• key space = integers

• Simple hash function:
 \[h(\text{key}) = \text{key} \mod \text{TableSize} \]
 – Client: \(f(x) = x \)
 – Library \(g(x) = x \mod \text{TableSize} \)
 – Fairly fast and natural

• Example:
 – \(\text{TableSize} = 10 \)
 – Insert 7, 18, 41, 34, 10
 – (As usual, ignoring data “along for the ride”)
Hashing integers

- key space = integers

- Simple hash function:
 \[h(\text{key}) = \text{key} \mod \text{TableSize} \]
 - Client: \(f(x) = x \)
 - Library \(g(x) = x \mod \text{TableSize} \)
 - Fairly fast and natural

- Example:
 - \(\text{TableSize} = 10 \)
 - Insert 7, 18, 41, 34, 10
 - (As usual, ignoring data “along for the ride”)
Hashing integers

- key space = integers

- Simple hash function:
 \[h(key) = key \mod \text{TableSize} \]
 - Client: \(f(x) = x \)
 - Library \(g(x) = x \mod \text{TableSize} \)
 - Fairly fast and natural

- Example:
 - \(\text{TableSize} = 10 \)
 - Insert 7, 18, 41, 34, 10
 - (As usual, ignoring data “along for the ride”)
Hashing integers

- key space = integers

- Simple hash function:
 \[h(key) = key \mod TableSize \]
 - Client: \(f(x) = x \)
 - Library \(g(x) = x \mod TableSize \)
 - Fairly fast and natural

- Example:
 - \(TableSize = 10 \)
 - Insert 7, 18, 41, 34, 10
 - (As usual, ignoring data “along for the ride”)
Hashing integers

- key space = integers

- Simple hash function:
 \[h(key) = key \mod \text{TableSize} \]
 - Client: \(f(x) = x \)
 - Library \(g(x) = x \mod \text{TableSize} \)
 - Fairly fast and natural

- Example:
 - \text{TableSize} = 10
 - Insert 7, 18, 41, 34, 10
 - (As usual, ignoring data “along for the ride”)
Collision-avoidance

• With “$x \% \textbf{TableSize}$” the number of collisions depends on
 – the ints inserted (obviously)
 – \textbf{TableSize}

• Larger table-size tends to help, but not always
 – Example: 70, 24, 56, 43, 10
 with \textbf{TableSize} = 10 and \textbf{TableSize} = 60

• Technique: Pick table size to be prime. Why?
 – Real-life data tends to have a pattern
 – “Multiples of 61” are probably less likely than “multiples of 60”
 – One collision-handling strategy does \textit{provably} well with prime table size
Back to the client

• If keys aren’t ints, the client must convert to an int
 – Trade-off: speed versus distinct keys hashing to distinct ints

• Very important example: Strings
 – Key space $K = s_0s_1s_2…s_{m-1}$
 • (where s_i are chars: $s_i \in [0,52]$ or $s_i \in [0,256]$ or $s_i \in [0,2^{16}]$)
 – Some choices: Which avoid collisions best?

1. $h(K) = s_0 \% \text{TableSize}$

2. $h(K) = \left(\sum_{i=0}^{m-1} s_i \right) \% \text{TableSize}$

3. $h(K) = \left(\sum_{i=0}^{k-1} s_i \cdot 37^i \right) \% \text{TableSize}$
Specializing hash functions

Thought question:

How might you hash differently if all your strings were web addresses (URLs)?
Hash functions

A few rules of thumb / tricks:

1. Use all 32 bits (careful, that includes negative numbers)
2. Use different overlapping bits for different parts of the hash
3. When smashing two hashes into one hash, use bitwise-xor
4. Rely on expertise of others; consult books and other resources
5. If keys are known ahead of time, choose a perfect hash that maps distinct keys to distinct integers with no collisions.
Hashing and comparing

- Need to emphasize a critical detail:
 - We initially hash key E to get a table index
 - To check an item is what we are looking for, $\text{compareTo } E$
 - Does it have an equal key?

- So a hash table needs a hash function and a comparator
 - The Java library uses a more object-oriented approach:
 each object has methods equals and hashCode

```java
class Object {
    boolean equals(Object o) {...}
    int hashCode() {...}
    ...
}
```
Equal Objects Must Hash the Same

• The Java library make a crucial assumption clients must satisfy
 – And all hash tables make analogous assumptions

• Object-oriented way of saying it:
 \[
 \text{If } a\text{.equals}(b), \text{ then } a\text{.hashCode}() == b\text{.hashCode}()
 \]

• Why is this essential?

• Why is this up to the client?

• So *always* override \texttt{hashCode} \textit{correctly} if you override \texttt{equals}
 – Many libraries use hash tables on your objects
Example

class MyDate {
 int month;
 int year;
 int day;

 boolean equals(Object otherObject) {
 if(this==otherObject) return true; // common?
 if(otherObject==null) return false;
 if(getClass()! = other.getClass()) return false;
 return month = otherObject.month
 && year = otherObject.year
 && day = otherObject.day;
 }
}
Example

class MyDate {
 int month;
 int year;
 int day;

 boolean equals(Object otherObject) {
 if(this==otherObject) return true; // common?
 if(otherObject==null) return false;
 if(getClass()! = other.getClass()) return false;
 return month == otherObject.month
 && year == otherObject.year
 && day == otherObject.day;
 }

 // wrong: must also override hashCode!
}
Conclusions and notes on hashing

- The hash table is one of the most important data structures
 - Supports only find, insert, and delete efficiently
 - Have to search entire table for other operations

- Important to use a good hash function

- Important to keep hash table at a good size

- Side-comment: hash functions have uses beyond hash tables
 - Example: Cryptography

- Big remaining topic: Handling collisions