Announcements
Amortized Analysis

- In amortized analysis, the time required to perform a sequence of data structure operations is averaged over all the operations performed.

- Typically used to show that the average cost of an operation is small for a sequence of operations, even though a single operation can cost a lot.
Amortized Analysis

• Recall our plain-old stack implemented as an array that doubles its size if it runs out of room
 – How can we claim \texttt{push} is $O(1)$ time if resizing is $O(n)$ time?
 – We can't, but we can claim it's an $O(1)$ amortized operation

We will just do a simple example
 – Text has more sophisticated examples and proof techniques
 – \textit{Idea} of how amortized describes average cost is essential
Amortized Complexity

We get an upperbound $T(n)$ on the total time of a sequence of n operations. The average time per operation is then $T(n)/n$, which is also the amortized time per operation.

If a sequence of n operations takes $O(n f(n))$ time, we say the amortized runtime is $O(f(n))$

- E.g. If any n operations take $O(n)$, then amortized $O(1)$ per operation
- E.g. If any n operations take $O(n^3)$, then amortized $O(n^2)$ per operation

Amortized guarantee ensures the average time per operation for any sequence is $O(f(n))$

The worst case time for an operation can be larger than $f(n)$

- As long as the worst case is always “rare enough” in any sequence of operations
“Building Up Credit”

- Can think of preceding “cheap” operations as building up “credit” that can be used to “pay for” later “expensive” operations

- Because any sequence of operations must be under the bound, enough “cheap” operations must come *first*
 - Else a prefix of the sequence, which is also a sequence, would violate the bound.
Example #1: Resizing stack

A stack implemented with an array where we double the size of the array if it becomes full

Claim: Any sequence of push/pop/isEmpty is amortized $O(1)$

Need to show any sequence of M operations takes time $O(M)$
 − Recall the non-resizing work is $O(M)$ (i.e., $M \cdot O(1)$)
 − The resizing work is proportional to the total number of element copies we do for the resizing
 − So it suffices to show that:
 After M operations, we have done $< 2M$ total element copies
 (So average number of copies per operation is bounded by a constant)
Claim: after M operations, we have done $< 2M$ total element copies

Let n be the size of the array after M operations

- Then we have done a total of:

 \[
 \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \ldots \quad \text{INITIAL SIZE} < n
 \]

 element copies

- Because we must have done at least enough push operations to cause resizing up to size n:

 \[M \geq \frac{n}{2}\]

- So

 \[2M \geq n > \text{number of element copies}\]
Other approaches

• If array grows by a constant amount (say 1000), operations are not amortized $O(1)$
 – After $O(M)$ operations, you may have done $\Theta(M^2)$ copies

• If array shrinks when 1/2 empty, operations are not amortized $O(1)$
 – Terrible case: \textbf{pop} once and shrink, \textbf{push} once and grow, \textbf{pop} once and shrink, …

• If array shrinks when 3/4 empty, it is amortized $O(1)$
 – Proof is more complicated, but basic idea remains: by the time an expensive operation occurs, many cheap ones occurred
Example #2: Queue with two stacks

A clever and simple queue implementation using only stacks

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}
Example #2: Queue with two stacks

A clever and simple queue implementation using only stacks

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}
Example #2: Queue with two stacks

A clever and simple queue implementation using only stacks

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}
Example #2: Queue with two stacks

A clever and simple queue implementation using only stacks

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}
Example #2: Queue with two stacks

A clever and simple queue implementation using only stacks

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x) { in.push(x); }
 E dequeue() {
 if (out.isEmpty()) {
 while (!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}
Analysis

- dequeue is not $O(1)$ worst-case because out might be empty and in may have lots of items

- But if the stack operations are (amortized) $O(1)$, then any sequence of queue operations is amortized $O(1)$

 - The total amount of work done per element is 1 push onto in, 1 pop off of in, 1 push onto out, 1 pop off of out

 - When you reverse n elements, there were n earlier $O(1)$ enqueue operations to average with
When *is* Amortized Analysis Useful?

- When the average per operation is all we care about (i.e., sum over all operations), amortized is perfectly fine
 - This is the usual situation

- If we need every operation to finish quickly (e.g., in a web server), amortized bounds may be too weak
Not always so simple

- Proofs for amortized bounds can be much more complicated
- Example: Splay trees are dictionaries with amortized $O(\log n)$ operations
 - No extra height field like AVL trees
 - See Chapter 4.5 if curious
- For more complicated examples, the proofs need much more sophisticated invariants and “potential functions” to describe how earlier cheap operations build up “energy” or “money” to “pay for” later expensive operations
 - See Chapter 11 if curious
- But complicated proofs have nothing to do with the code (which may be easy!)
Switching gears…

• Memory hierarchy/locality
Why do we need to know about the memory hierarchy/locality?

• One of the assumptions that Big-O makes is that all operations take the same amount of time
• Is this really true?
Definitions

- A **cycle** (for our purposes) is the time it takes to execute a single simple instruction (e.g. adding two registers together)
- **Memory latency** is the time it takes to access memory
CPU

~16-64+ registers

Cache

SRAM
8 KB - 4 MB

Main Memory

DRAM
2-10 GB

Disk

many GB

Time to access:

1 ns per instruction

2-10 ns

40-100 ns

a few milliseconds

(5-10 million ns)
What does this mean?

• It is much faster to do: Than:
 5 million arithmetic ops 1 disk access
 2500 L2 cache accesses 1 disk access
 400 main memory accesses 1 disk access

• Why are computers build this way?
 – Physical realities (speed of light, closeness to CPU)
 – Cost (price per byte of different storage technologies)
 – Under the right circumstances, this kind of hierarchy can simulate storage with access time of highest (fastest) level and size of lowest (largest) level
Microprocessor Transistor Counts 1971-2011 & Moore’s Law

The graph shows the transistor count doubling every two years from 1971 to 2011. The curve represents the exponential growth in transistor count over time, illustrating Moore’s Law.
Processor-Memory Performance Gap

![Graph showing the gap between CPU frequency and DRAM speeds from 1980 to 2005. The CPU frequency line shows a 2x every 2 years increase, while the DRAM speed line shows a 2x every 6 years increase. The gap between the two lines increases over time.]
What can be done?

- **Goal**: attempt to reduce the accesses to slower levels
So, what can we do?

- The hardware automatically moves data from main memory into the caches for you
 - Replacing items already there
 - Algorithms are much faster if “data fits in cache” (often does)

- Disk accesses are done by software (e.g. ask operating system to open a file or database to access some records)

- So most code “just runs,” but sometimes it’s worth designing algorithms / data structures with knowledge of memory hierarchy
 - To do this, we need to understand locality
Locality

- **Temporal Locality** (locality in time)
 - If an item (a location in memory) is referenced, *that same location* will tend to be referenced again soon.

- **Spatial Locality** (locality in space)
 - If an item is referenced, items *whose addresses are close by* tend to be referenced soon.
How does data move up the hierarchy?

• Moving data up the hierarchy is slow because of *latency* (think distance to travel)
 – Since we’re making the trip anyway, might as well carpool
 • Get a **block** of data in the same time we could get a byte
 – Sends *nearby memory* because
 • It’s easy
 • Likely to be asked for soon (think fields/arrays)
• Once a value is in cache, may as well keep it around for a while; accessed once, a value is more likely to be accessed again in the near future (as opposed to some random other value)

Spatial Locality

Temporal Locality
Cache Facts

• Definitions:
 – **Cache hit** – address requested is in the cache
 – **Cache miss** – address requested is NOT in the cache
 – **Block or page size** – the number of contiguous bytes moved from disk to memory
 – **Cache line size** – the number of contiguous bytes moved from memory to cache
Examples

x = a + 6 x = a[0] + 6
y = a + 5 y = a[1] + 5
z = 8 * a z = 8 * a[2]
Examples

\[x = a + 6 \quad \text{miss} \quad x = a[0] + 6 \quad \text{miss} \]
\[y = a + 5 \quad \text{hit} \quad y = a[1] + 5 \quad \text{hit} \]
\[z = 8 \times a \quad \text{hit} \quad z = 8 \times a[2] \quad \text{hit} \]
Examples

\[x = a + 6 \] \text{miss} \quad \[x = a[0] + 6 \] \text{miss}
\[y = a + 5 \] \text{hit} \quad \[y = a[1] + 5 \] \text{hit}
\[z = 8 \times a \] \text{hit} \quad \[z = 8 \times a[2] \] \text{hit}

temporal locality spatial locality
Locality and Data Structures

- Which has (at least the potential) for better spatial locality, arrays or linked lists?
Locality and Data Structures

• Which has (at least the potential) for better spatial locality, arrays or linked lists?
 – e.g. traversing elements

- Only miss on first item in a cache line

```
+---+---+---+---+---+---+---+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+---+---+---+---+---+---+---+
+---+---+---+---+---+---+---+
| miss | hit | hit | hit | miss | hit | hit |
+---+---+---+---+---+---+---+
```

- cache line size

Winter 2015
CSE 373 Data structures and Algorithms
Locality and Data Structures

- Which has (at least the potential) for better spatial locality, arrays or linked lists?
 - e.g. traversing elements
Locality and Data Structures

- Which has (at least the potential) for better spatial locality, arrays or linked lists?
 - e.g. traversing elements

- Miss on every item (unless more than one randomly happen to be in the same cache line)