Announcements

• Homework 3 due in Sunday, February 1

• TA sessions
The plan

Last lecture:

- Disjoint sets
- The union-find ADT for disjoint sets

Today’s lecture:

- Basic implementation of the union-find ADT with “up trees”
- Optimizations that make the implementation much faster
Union-Find ADT

• Given an unchanging set S, create an initial partition of a set
 – Typically each item in its own subset: $\{a\}$, $\{b\}$, $\{c\}$, …
 – Give each subset a “name” by choosing a representative element

• Operation find takes an element of S and returns the representative element of the subset it is in

• Operation union takes two subsets and (permanently) makes one larger subset
 – A different partition with one fewer set
 – Affects result of subsequent find operations
 – Choice of representative element up to implementation
Implementation – our goal

• Start with an initial partition of n subsets
 – Often 1-element sets, e.g., \{1\}, \{2\}, \{3\}, \ldots, \{n\}

• May have *any number of find* operations

• May have up to n-1 *union* operations in any order
 – After n-1 union operations, every find returns same single set
Up-tree data structure

- Tree with:
 - No limit on branching factor
 - References from *children* to *parent*

- Start with *forest* of 1-node trees

- Possible forest after several unions:
 - Will use roots for set names
Find

\texttt{find(x)}:
- Assume we have \(O(1)\) access to each node
 - Will use an array where index \(i\) holds node \(i\)
- Start at \(x\) and follow parent pointers to root
- Return the root

\[\text{\texttt{find(6)} = 7}\]
Union

union(x, y):
 - Assume x and y are roots
 • Else find the roots of their trees
 - Assume distinct trees (else do nothing)
 - Change root of one to have parent be the root of the other
 • Notice no limit on branching factor

union(1, 7)
Simple implementation

- If set elements are contiguous numbers (e.g., 1, 2, ..., n), use an array of length n called \textit{up}
 - Starting at index 1 on slides
 - Put in array index of parent, with 0 (or -1, etc.) for a root

- Example:

```
1  2  3  4  5  6  7
```

- Example:

```
1  2  3  4  5  6  7
```

- If set elements are not contiguous numbers, could have a separate dictionary to map elements (keys) to numbers (values)
Implement operations

// assumes x in range 1,n
int find(int x) {
 while(up[x] != 0) {
 x = up[x];
 }
 return x;
}

// assumes x,y are roots
void union(int x, int y){
 up[y] = x;
}

- Worst-case run-time for union? \(O(1) \)
- Worst-case run-time for find? \(O(n) \)
- Worst-case run-time for \(m \) finds and \(n-1 \) unions? \(O(m*n) \)
Two key optimizations

1. Improve union so it stays $O(1)$ but makes find $O(\log n)$
 - So m finds and $n-1$ unions is $O(m \log n + n)$
 - Union-by-size: connect smaller tree to larger tree

2. Improve find so it becomes even faster
 - Make m finds and $n-1$ unions almost $O(m + n)$
 - Path-compression: connect directly to root during finds
The bad case to avoid

1 2 3 ... n

union(2,1)

union(3,2)

:

union(n,n-1)

find(1) = n steps!!
Union-by-size:

- Always point the *smaller* (total # of nodes) tree to the root of the larger tree
Union-by-size

Union-by-size:
- Always point the *smaller* (total # of nodes) tree to the root of the larger tree
Array implementation

Keep the size (number of nodes in a second array)
- Or have one array of objects with two fields
Nifty trick

Actually we do not need a second array…

– Instead of storing 0 for a root, store negation of size
– So up value < 0 means a root
The Bad case? Now a Great case…

1 2 3 n

union(2,1)

2 3 ⋮ n

union(3,2)

⋮

union(n,n-1)

1

2

3

\text{find}(1) \text{ constant here}

1

2

3 ⋮ n
General analysis

- Showing one worst-case example is now good is not a proof that the worst-case has improved

- So let’s prove:
 - union is still $O(1)$ – this is “obvious”
 - find is now $O(\log n)$

- Claim: If we use union-by-size, an up-tree of height h has at least 2^h nodes
 - Proof by induction on h…
Exponential number of nodes

\[P(h) = \text{With union-by-size, up-tree of height } h \text{ has at least } 2^h \text{ nodes} \]

Proof by induction on \(h \):

- **Base case:** \(h = 0 \): The up-tree has 1 node and \(2^0 = 1 \)
- **Inductive case:** Assume \(P(h) \) and show \(P(h+1) \)
 - A height \(h+1 \) tree \(T \) has at least one height \(h \) child \(T_1 \)
 - \(T_1 \) has at least \(2^h \) nodes by induction
 - And \(T \) has *at least* as many nodes not in \(T_1 \) than in \(T_1 \)
 - Else union-by-size would have had \(T \) point to \(T_1 \), not \(T_1 \) point to \(T \) (!!)
 - So total number of nodes is *at least* \(2^h + 2^h = 2^{h+1} \)
The key idea

Intuition behind the proof: No one child can have more than half the nodes

So, as usual, if number of nodes is exponential in height, then height is logarithmic in number of nodes

So \textbf{find} is \textbf{O}(\log n)
The new worst case

n/2 Unions-by-size

n/4 Unions-by-size
The new worst case (continued)

After \(\frac{n}{2} + \frac{n}{4} + \ldots + 1 \) Unions-by-size:

Height grows by 1 a total of \(\log n \) times
What about union-by-height

We could store the height of each root rather than size

• Still guarantees logarithmic worst-case find
 – Proof left as an exercise if interested

• But does not work well with our next optimization
 – Maintaining height becomes inefficient, but maintaining size still easy
Two key optimizations

1. Improve union so it stays $O(1)$ but makes find $O(\log n)$
 - So m finds and $n-1$ unions is $O(m \log n + n)$
 - Union-by-size: connect smaller tree to larger tree

2. Improve find so it becomes even faster
 - Make m finds and $n-1$ unions almost $O(m + n)$
 - Path-compression: connect directly to root during finds
Path compression

- Simple idea: As part of a `find`, change each encountered node’s parent to point directly to root
 - Faster future `finds` for everything on the path (and their descendants)
// performs path compression
int find(i) {
 // find root
 int r = i
 while(up[r] > 0)
 r = up[r]

 // compress path
 if i==r
 return r;
 int old_parent = up[i]
 while(old_parent != r) {
 up[i] = r
 i = old_parent;
 old_parent = up[i]
 }
 return r;
}
So, how fast is it?

A single worst-case find could be $O(\log n)$
 - But only if we did a lot of worst-case unions beforehand
 - And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than $O(\log n)$
 • total for m finds and $n-1$ unions is almost $O(m+n)$

 - We won’t prove it – see text if curious