CSE373: Data Structures & Algorithms

Lecture 10: Disjoint Sets and the Union-Find ADT

Linda Shapiro
Winter 2015
Announcements

• Get started on HW03
 – Keyword search in binary search trees
Where we are

Last lecture:
• Priority queues and binary heaps

Today:
• Disjoint sets
• The union-find ADT for disjoint sets
Disjoint sets

• A set is a collection of elements (no-repeats)

• In computer science, two sets are said to be disjoint if they have no element in common.
 • \(S_1 \cap S_2 = \emptyset \)

• For example, \{1, 2, 3\} and \{4, 5, 6\} are disjoint sets.
• For example, \{x, y, z\} and \{t, u, x\} are not disjoint.
Partitions

A partition P of a set S is a set of sets $\{S_1, S_2, \ldots, S_n\}$ such that every element of S is in exactly one S_i

Formally:

- $S_1 \cup S_2 \cup \ldots \cup S_k = S$
- $i \neq j$ implies $S_i \cap S_j = \emptyset$ (sets are disjoint with each other)

Example:

- Let S be $\{a, b, c, d, e\}$
- One partition: $\{a\}$, $\{d,e\}$, $\{b,c\}$
- Another partition: $\{a,b,c\}$, \emptyset, $\{d\}$, $\{e\}$
- A third: $\{a,b,c,d,e\}$
- Not a partition: $\{a,b,d\}$, $\{c,d,e\}$ element d appears twice
- Not a partition of S: $\{a,b\}$, $\{e,c\}$ missing element d
Binary relations

- $S \times S$ is the set of all pairs of elements of S (Cartesian product)
 - Example: If $S = \{a, b, c\}$
 then $S \times S = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}$

- A binary relation R on a set S is any subset of $S \times S$
 - i.e. a collection of ordered pairs of elements of S
 - Write $R(x, y)$ to mean (x, y) is “in the relation”
 - (Unary, ternary, quaternary, … relations defined similarly)

- Examples for $S = \text{people-in-this-room}$
 - Sitting-next-to-each-other relation
 - First-sitting-right-of-second relation
 - Went-to-same-high-school relation
 - First-is-younger-than-second relation
Properties of binary relations

- A relation R over set S is reflexive means $R(a,a)$ for all a in S
 - e.g. The relation “\leq“ on the set of integers $\{1, 2, 3\}$ is
 \[
 \{<1, 1>, <1, 2>, <1, 3>, <2, 2>, <2, 3>, <3, 3>\}
 \]
 It is reflexive because $<1, 1>, <2, 2>, <3, 3>$ are in this relation.

- A relation R on a set S is symmetric if and only if for any a and b in S, whenever $<a, b>$ is in R, $<b, a>$ is in R.
 - e.g. The relation “$=$“ on the set of integers $\{1, 2, 3\}$ is
 \[
 \{<1, 1>, <2, 2>, <3, 3>\}
 \]
 it is symmetric.
 - The relation "being acquainted with" on a set of people is symmetric.

- A binary relation R over set S is transitive means:
 If $R(a,b)$ and $R(b,c)$ then $R(a,c)$ for all a,b,c in S
 - e.g. The relation “\leq“ on the set of integers $\{1, 2, 3\}$ is transitive, because for $<1, 2>$ and $<2, 3>$ in “\leq“, $<1, 3>$ is also in “\leq“ (and similarly for the others)
Equivalence relations

• A binary relation R is an equivalence relation if R is reflexive, symmetric, and transitive

• Examples
 – Same gender
 – Connected roads in the world
 – "Is equal to" on the set of real numbers
 – "Has the same birthday as" on the set of all people
 – …
Punch-line

• Equivalence relations give rise to partitions.

• Every partition induces an equivalence relation

• Every equivalence relation induces a partition

• Suppose $P = \{S_1, S_2, \ldots, S_n\}$ is a partition
 – Define $R(x, y)$ to mean x and y are in the same S_i
 • R is an equivalence relation

• Suppose R is an equivalence relation over S
 – Consider a set of sets S_1, S_2, \ldots, S_n where
 1) x and y are in the same S_i if and only if $R(x, y)$
 2) Every x is in some S_i
 • This set of sets is a partition
Example

- Let $S = \{a,b,c,d,e\}$
- One partition: \{a,b,c\}, \{d\}, \{e\}
- The corresponding equivalence relation:
 \[(a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a), (b,c), (c,b), (d,d), (e,e)\]
The Union-Find ADT

- The union-find ADT (or "Disjoint Sets" or "Dynamic Equivalence Relation") keeps track of a set of elements partitioned into a number of disjoint subsets.

- Many uses (which is why an ADT taught in CSE 373):
 - Road/network/graph connectivity (will see this again)
 - “connected components” e.g., in social network
 - Partition an image by connected-pixels-of-similar-color
 - Type inference in programming languages

- Not as common as dictionaries, queues, and stacks, but valuable because implementations are very fast, so when applicable can provide big improvements
Union-Find Operations

• Given an unchanging set S, create an initial partition of a set
 – Typically each item in its own subset: \{a\}, \{b\}, \{c\}, …
 – Give each subset a “name” by choosing a representative element

• Operation find takes an element of S and returns the representative element of the subset it is in

• Operation union takes two subsets and (permanently) makes one larger subset
 – A different partition with one fewer set
 – Affects result of subsequent find operations
 – Choice of representative element up to implementation
Example

• Let $S = \{1,2,3,4,5,6,7,8,9\}$

• Let initial partition be (will highlight representative elements red)

 \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}

• union(2,5):

 \{1\}, \{2, 5\}, \{3\}, \{4\}, \{6\}, \{7\}, \{8\}, \{9\}

• find(4) = 4, find(2) = 2, find(5) = 2

• union(4,6), union(2,7)

 \{1\}, \{2, 5, 7\}, \{3\}, \{4, 6\}, \{8\}, \{9\}

• find(4) = 6, find(2) = 2, find(5) = 2

• union(2,6)

 \{1\}, \{2, 4, 5, 6, 7\}, \{3\}, \{8\}, \{9\}
No other operations

• All that can “happen” is sets get unioned
 – No “un-union” or “create new set” or …

• As always: trade-offs
 – Implementations will exploit this small ADT

• Surprisingly useful ADT
 – But not as common as dictionaries or priority queues
Example application: maze-building

- Build a random maze by erasing edges

- Possible to get from anywhere to anywhere
 - Including “start” to “finish”
- No loops possible without backtracking
 - After a “bad turn” have to “undo”
Maze building

Pick start edge and end edge

Start

End
Repeatedly pick random edges to delete

One approach: just keep deleting random edges until you can get from start to finish
Problems with this approach

1. How can you tell when there is a path from start to finish?
 – We do not really have an algorithm yet

2. We could have cycles, which a “good” maze avoids
 – Want one solution and no cycles
Revised approach

• Consider edges in random order (i.e. pick an edge)

• Only delete an edge if it introduces no cycles (how? TBD)

• When done, we will have a way to get from any place to any other place (including from start to end points)
Cells and edges

- Let’s number each cell
 - 36 total for 6 x 6
- An (internal) edge \((x, y)\) is the line between cells \(x\) and \(y\)
 - 60 total for 6x6: \((1,2), (2,3), \ldots, (1,7), (2,8), \ldots\)
The trick

- Partition the cells into **disjoint** sets
 - Two cells in same set if they are “connected”
 - Initially every cell is in its own subset
- If removing an edge would connect two different subsets:
 - then remove the edge and **union** the subsets
 - else leave the edge because removing it makes a cycle
The algorithm

- **P** = disjoint sets of connected cells
 initially each cell in its own 1-element set
- **E** = set of edges not yet processed, initially all (internal) edges
- **M** = set of edges kept in maze (initially empty)

while P has more than one set {
 - Pick a random edge \((x,y)\) to remove from **E**
 - \(u = \text{find}(x)\)
 - \(v = \text{find}(y)\)
 - if \(u==v\)
 - add \((x,y)\) to **M** // same subset, do not remove edge, do not create cycle
 else
 - \(\text{union}(u,v)\) // connect subsets, do not put edge in **M**
}

Add remaining members of **E** to **M**, then output **M** as the maze
Example at some step

Pick edge (8, 14)

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

End

P
{1, 2, 7, 8, 9, 13, 19}
{3}
{4}
{5}
{6}
{10}
{11, 17}
{12}
{14, 20, 26, 27}
{15, 16, 21}
{18}
{25}
{28}
{31}
{22, 23, 24, 29, 30, 32, 33, 34, 35, 36}
Example

P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32,33,34,35,36}

P
{1,2,7,8,9,13,19,14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32,33,34,35,36}

Find(8) = 7
Find(14) = 20
Union(7,20)
Example: Add edge to M step

Pick edge (19,20)
Find (19) = 7
Find (20) = 7
Add (19,20) to M

P
\{1,2,7,8,9,13,19,14,20,26,27\}
\{3\}
\{4\}
\{5\}
\{6\}
\{10\}
\{11,17\}
\{12\}
\{15,16,21\}
\{18\}
\{25\}
\{28\}
\{31\}
\{22,23,24,29,30,32\}
\{33,34,35,36\}
At the end

- Stop when P has one set (i.e. all cells connected)
- Suppose green edges are already in M and black edges were not yet picked
 - Add all black edges to M

\[
\begin{array}{cccccc}
\text{Start} & 1 & 2 & 3 & 4 & 5 & 6 \\
7 & 8 & 9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16 & 17 & 18 \\
19 & 20 & 21 & 22 & 23 & 24 \\
25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 \\
\end{array}
\]

\[P \{1,2,3,4,5,6,7,\ldots 36}\]

Done! 😊
A data structure for the union-find ADT

• Start with an initial partition of \(n \) subsets
 – Often 1-element sets, e.g., \{1\}, \{2\}, \{3\}, …, \{n\}

• May have any number of find operations
• May have up to \(n-1 \) union operations in any order
 – After \(n-1 \) union operations, every find returns same 1 set
Teaser: the up-tree data structure

- Tree structure with:
 - No limit on branching factor
 - References from children to parent

- Start with forest of 1-node trees

- Possible forest after several unions:
 - Will use roots for set names