CSE373: Data Structures & Algorithms

Lecture 9: Disjoint Sets and the Union-Find ADT

Lauren Milne
Summer 2015
Announcements

• Start homework 3 soon.....
 – Priority queues and binary heaps

– TA Sessions on Tuesday and Thursday to prep for midterm

– Possibly switching times for TA Sessions, hopefully will send out a poll this week with time slots that we can get classrooms

– Midterm Friday on everything up to and through lecture 8 (including Floyd’s method that we covered today)
Where we are

Last lecture:
• Priority queues and binary heaps

Today:
• Disjoint sets
• The union-find ADT for disjoint sets

Next lecture:
• Basic implementation of the union-find ADT with “up trees”
• Optimizations that make the implementation much faster
Disjoint sets

• A set is a collection of elements (no-repeats)

• Two sets are said to be disjoint if they have no element in common.
 • \(S_1 \cap S_2 = \emptyset \)

• For example, \(\{1, 2, 3\} \) and \(\{4, 5, 6\} \) are disjoint sets.
• For example, \(\{x, y, z\} \) and \(\{t, u, x\} \) are not disjoint.
Partitions

A partition P of a set S is a set of sets $\{S_1, S_2, \ldots, S_n\}$ such that every element of S is in **exactly one** S_i

Put another way:
- $S_1 \cup S_2 \cup \ldots \cup S_k = S$
- $i \neq j$ implies $S_i \cap S_j = \emptyset$ (sets are disjoint with each other)

Example:
- Let S be $\{a, b, c, d, e\}$
- One partition: $\{a\}$, $\{d, e\}$, $\{b, c\}$
- Another partition: $\{a, b, c\}$, $\{d\}$, $\{e\}$
- A third: $\{a, b, c, d, e\}$
- **Not a partition**: $\{a, b, d\}$, $\{c, d, e\}$ element d appears twice
- **Not a partition**: $\{a, b\}$, $\{e, c\}$ missing element d
Binary relations

• A binary relation R is defined on a set S if for every pair of elements (x,y) in the set, $R(x,y)$ is either true or false. If $R(x,y)$ is true, we say x is related to y.
 – i.e. a collection of ordered pairs of elements of S
 – (Unary, ternary, quaternary, … relations defined similarly)

• Examples for $S =$ people-in-this-room
 – Sitting-next-to-each-other relation
 – First-sitting-right-of-second relation
 – Went-to-same-high-school relation
Properties of binary relations

A relation R over set S is:

- **reflexive**, if $R(a,a)$ holds for all a in S

 e.g. The relation “\leq” on the set of integers $\{1, 2, 3\}$ is $\{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$

 It is reflexive because $(1, 1)$, $(2, 2)$, $(3, 3)$ are in this relation.

- **symmetric** if and only if for any a and b in S, whenever (a, b) is in R, (b, a) is in R.

 e.g. The relation “$=$” on the set of integers $\{1, 2, 3\}$ is $\{(1, 1), (2, 2), (3, 3)\}$ and it is symmetric.

- **transitive** if $R(a,b)$ and $R(b,c)$ then $R(a,c)$ for all a,b,c in S

 e.g. The relation “\leq” on the set of integers $\{1, 2, 3\}$ is transitive, because for $(1, 2)$ and $(2, 3)$ in “\leq“, $(1, 3)$ is also in “\leq“ (and similarly for the others)
Equivalence relations

- A binary relation R is an equivalence relation if R is reflexive, symmetric, and transitive.

- Examples
 - Same gender
 - Electrical connectivity, where connections are metal wires
 - "Has the same birthday as" on the set of all people
 - ...

Punch-line

• Equivalence relations give rise to partitions.

• Every partition induces an equivalence relation
• Every equivalence relation induces a partition

• Suppose $P = \{S_1, S_2, \ldots, S_n\}$ is a partition
 – Define $R(x,y)$ to mean x and y are in the same S_i
 • R is an equivalence relation

• Suppose R is an equivalence relation over S
 – Consider a set of sets S_1, S_2, \ldots, S_n where
 (1) x and y are in the same S_i if and only if $R(x,y)$
 (2) Every x is in some S_i
 • This set of sets is a partition
Example

• Let S be \{a, b, c, d, e\}

• One partition: \{a, b, c\}, \{d\}, \{e\}

• The corresponding equivalence relation:
 \[(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (d, d), (e, e)\]
Example

• Let S be \{a, b, c, d, e\}

• The equivalence relation: (a,a), (a,b), (b,a), (b,b), (c,c), (d,d),
 (e,e)

• The corresponding partition?
 \{a,b\}, \{c\}, \{d\}, \{e\}
The **Union-Find ADT**

- The union-find ADT (or "Disjoint Sets" or "Dynamic Equivalence Relation") keeps track of a set of elements partitioned into a number of disjoint subsets.

- Many uses!
 - Road/network/graph connectivity (will see this again)
 - keep track of “connected components” e.g., in social network
 - Partition an image by connected-pixels-of-similar-color

- Not as common as dictionaries, queues, and stacks, but valuable because implementations are very fast, so when applicable can provide big improvements
Union-Find Operations

- Given an unchanging set S, create an initial partition of a set
 - Typically each item in its own subset: $\{a\}, \{b\}, \{c\}, \ldots$
 - Give each subset a “name” by choosing a representative element

- Operation find takes an element of S and returns the representative element of the subset it is in

- Operation union takes two subsets and (permanently) makes one larger subset
 - A different partition with one fewer set
 - Affects result of subsequent find operations
 - Choice of representative element up to implementation
Example

• Let $S = \{1,2,3,4,5,6,7,8,9\}$

• Let initial partition be (will highlight representative elements red)
 $\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}$

• $\text{union}(2,5)$:
 $\{1\}, \{2,\,5\}, \{3\}, \{4\}, \{6\}, \{7\}, \{8\}, \{9\}$

• $\text{find}(4) = 4$, $\text{find}(2) = 2$, $\text{find}(5) = 2$

• $\text{union}(4,6)$, $\text{union}(2,7)$
 $\{1\}, \{2,\,5,\,7\}, \{3\}, \{4,\,6\}, \{8\}, \{9\}$

• $\text{find}(4) = 6$, $\text{find}(2) = 2$, $\text{find}(5) = 2$

• $\text{union}(2,6)$
 $\{1\}, \{2,\,4,\,5,\,6,\,7\}, \{3\}, \{8\}, \{9\}$
No other operations

• All that can “happen” is sets get unioned
 – No “un-union” or “create new set” or …

• As always: trade-offs
 – Implementations will exploit this small ADT

• Surprisingly useful ADT
 – But not as common as dictionaries or priority queues
Example application: maze-building

- Build a random maze by erasing edges
 - Possible to get from anywhere to anywhere
 - Including “start” to “finish”
 - No loops possible without backtracking
 - After a “bad turn” have to “undo”
Maze building

Pick start edge and end edge
Repeatedly pick random edges to delete

One approach: just keep deleting random edges until you can get from start to finish
Problems with this approach

1. How can you tell when there is a path from start to finish?
 – We do not really have an algorithm yet

2. We could have *cycles*, which a “good” maze avoids
 – Want one solution and no cycles
Revised approach

• Consider edges in random order (i.e. pick an edge)

• Only delete an edge if it introduces no cycles (how? TBD)

• When done, we will have a way to get from any place to any other place (including from start to end points)
Cells and edges

- Let’s number each cell
 - 36 total for 6 x 6
- An (internal) edge (x,y) is the line between cells x and y
 - 60 total for 6x6: (1,2), (2,3), ..., (1,7), (2,8), ...

![Numbered cells and edges](image)
The trick

- Partition the cells into disjoint sets
 - Two cells in same set if they are “connected”
 - Initially every cell is in its own subset
- If removing an edge would connect two different subsets:
 - then remove the edge and union the subsets
 - else leave the edge because removing it makes a cycle
The algorithm

- \(P = \text{disjoint sets} \) of connected cells
 - initially each cell in its own 1-element set
- \(E = \text{set} \) of edges not yet processed, initially all (internal) edges
- \(M = \text{set} \) of edges kept in maze (initially empty)

while \(P \) has more than one set {

 - Pick a random edge \((x,y)\) to remove from \(E \)

 - \(u = \text{find}(x) \)

 - \(v = \text{find}(y) \)

 - if \(u==v \)

 add \((x,y)\) to \(M \) // same subset, leave edge in maze, do not create cycle

 else

 \text{union}(u,v) // connect subsets, remove edge from maze

}

Add remaining members of \(E \) to \(M \), then output \(M \) as the maze
Example

Pick edge (8,14)
Find(8) = 7
Find(14) = 20
Union(7,20)

Start

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

End

P

\{1,2,7,8,9,13,19\}
\{3\}
\{4\}
\{5\}
\{6\}
\{10\}
\{11,17\}
\{12\}
\{14,20,26,27\}
\{15,16,21\}
\{18\}
\{25\}
\{28\}
\{31\}
\{22,23,24,29,30,32,33,34,35,36\}
Example

\[P = \{1,2,7,8,9,13,19\} \]
\[\{3\} \]
\[\{4\} \]
\[\{5\} \]
\[\{6\} \]
\[\{10\} \]
\[\{11,17\} \]
\[\{12\} \]
\[\{14,20,26,27\} \]
\[\{15,16,21\} \]
\[\{18\} \]
\[\{25\} \]
\[\{28\} \]
\[\{31\} \]
\[\{22,23,24,29,30,32,33,34,35,36\} \]

\[\text{Find}(8) = 7 \]
\[\text{Find}(14) = 20 \]

\[\text{Union}(7,20) \]

\[P = \{1,2,7,8,9,13,19,14,20,26,27\} \]
\[\{3\} \]
\[\{4\} \]
\[\{5\} \]
\[\{6\} \]
\[\{10\} \]
\[\{11,17\} \]
\[\{12\} \]
\[\{15,16,21\} \]
\[\{18\} \]
\[\{25\} \]
\[\{28\} \]
\[\{31\} \]
\[\{22,23,24,29,30,32,33,34,35,36\} \]
Example: Add edge to M step

Pick edge (19,20)
Find (19) = 7
Find (20) = 7
Add (19,20) to M

P
\{1,2,7,8,9,13,19,14,20,26,27\}
\{3\}
\{4\}
\{5\}
\{6\}
\{10\}
\{11,17\}
\{12\}
\{15,16,21\}
\{18\}
\{25\}
\{28\}
\{31\}
\{22,23,24,29,30,32,33,34,35,36\}
At the end of while loop

- Stop when P has one set (i.e. all cells connected)
- Suppose green edges are already in M and black edges were not yet picked
 - Add all black edges to M

\[
P = \{1, 2, 3, 4, 5, 6, 7, \ldots, 36\}
\]
Data structure for the union-find ADT

- Start with an initial partition of n subsets
 - Often 1-element sets, e.g., \{1\}, \{2\}, \{3\}, ..., \{n\}

- May have any number of \texttt{find} operations
- May have up to \(n-1\) \texttt{union} operations in any order
 - After \(n-1\) \texttt{union} operations, every \texttt{find} returns same 1 set
Teaser: the up-tree data structure

- Tree structure with:
 - No limit on branching factor
 - References from **children** to **parent**

- Start with *forest* of 1-node trees

- Possible forest after several unions:
 - Will use roots for set names