Announcements

• Homework 2 due today
• Homework 3 out today (due July 22nd) 😊
• Midterm next Friday

• Today
 – AVL Tree Review
 – Priority Queues
 – Min Heaps
The general right-left case
The general right-left case

Before we added the node, the tree was balanced. . .

If V (and U) were of height h, would the tree be balanced here?
The general right-left case

The actual value of \(h \) can be anything, we only care about the relative heights of the subtrees...

These two trees are equivalent, we just redefined \(h \)
The general right-left case
Insert, summarized

- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
 - Node’s left-left grandchild is too tall
 - Node’s left-right grandchild is too tall
 - Node’s right-left grandchild is too tall
 - Node’s right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallest-unbalanced subtree has the same height as before the insertion
 - So all ancestors are now balanced
AVL Trees efficiency

- Worst-case complexity of find: $O(\log n)$
 - Tree is balanced

- Worst-case complexity of insert: $O(\log n)$
 - Tree starts balanced
 - A rotation is $O(1)$ and there’s an $O(\log n)$ path to root
 - Tree ends balanced

- Worst-case complexity of buildTree: $O(n \log n)$

Takes some more rotation action to handle delete…
Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are *always* balanced
2. Height balancing adds no more than a constant factor to the speed of *insert* and *delete*

Arguments against AVL trees:

1. Difficult to program & debug [but done once in a library!]
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. If *amortized* (later, I promise) logarithmic time is enough, use splay trees (also in the text)
Done with AVL Trees (....phew!)

next up...

Priority Queues ADT
(Homework 3 😊)
A new ADT: Priority Queue

- A priority queue holds compare-able data
 - Like dictionaries, we need to compare items
 - Given x and y, is x less than, equal to, or greater than y
 - Meaning of the ordering can depend on your data
 - Integers are comparable, so will use them in examples
 - But the priority queue ADT is much more general
 - Typically two fields, the priority and the data
Priorities

• Each item has a “priority”
 – In our examples, the lesser item is the one with the greater priority
 – So “priority 1” is more important than “priority 4”
 – (Just a convention, think “first is best”)

• Operations:
 – insert
 – deleteMin
 – is_empty

• Key property: deleteMin returns and deletes the item with greatest priority (lowest priority value)
 – Can resolve ties arbitrarily
Example

insert \(x_1 \) with priority 5
insert \(x_2 \) with priority 3
\(a = \text{deleteMin} \ // \ x_2 \)
insert \(x_3 \) with priority 2
insert \(x_4 \) with priority 6
\(c = \text{deleteMin} \ // \ x_3 \)
\(d = \text{deleteMin} \ // \ x_1 \)

- Analogy: insert is like enqueue, deleteMin is like dequeue
 - But the whole point is to use priorities instead of FIFO
Applications

Like all good ADTs, the priority queue arises often

- Run multiple programs in the operating system
 - “critical” before “interactive” before “compute-intensive”
- Treat hospital patients in order of severity (or triage)
- Forward network packets in order of urgency
- Select most frequent symbols for data compression
- Sort (first \texttt{insert} all, then repeatedly \texttt{deleteMin})
 - Much like Homework 1 uses a stack to implement reverse
Finding a good data structure

- Will show an efficient, non-obvious data structure for this ADT
 - But first let’s analyze some “obvious” ideas for n data items

<table>
<thead>
<tr>
<th>data</th>
<th>insert algorithm / time</th>
<th>deleteMin algorithm / time</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted array</td>
<td>add at end</td>
<td>search</td>
</tr>
<tr>
<td>unsorted linked list</td>
<td>add at front</td>
<td>search</td>
</tr>
<tr>
<td>sorted circular array</td>
<td>search / shift</td>
<td>move front</td>
</tr>
<tr>
<td>sorted linked list</td>
<td>put in right place</td>
<td>remove at front</td>
</tr>
<tr>
<td>binary search tree</td>
<td>put in right place</td>
<td>leftmost</td>
</tr>
<tr>
<td>AVL tree</td>
<td>put in right place</td>
<td>leftmost</td>
</tr>
</tbody>
</table>
Our data structure

A binary min-heap (or just binary heap or just heap) has:

- **Structure property**: A complete binary tree
- **Heap property**: The priority of every (non-root) node is less important than the priority of its parent

 - *Not a binary search tree*

So:

- Where is the highest-priority item?
- What is the height of a heap with n items?
Operations: basic idea

• **findMin**: return root.data
• **deleteMin**:
 1. answer = root.data
 2. Move right-most node in last row to root to restore structure property
 3. “Percolate down” to restore heap property
• **insert**:
 1. Put new node in next position on bottom row to restore structure property
 2. “Percolate up” to restore heap property

Overall strategy:
• *Preserve structure property*
• *Break and restore heap property*
DeleteMin

Delete (and later return) value at root node
DeleteMin: Keep the Structure Property

- We now have a “hole” at the root
 - Replace it with another node
- Want to keep structure property
- Pick the last node on the bottom row of the tree and move it to the “hole”
DeleteMin: Restore the Heap Property

Percolate down:
• Compare priority of item with children
• If priority is less important, swap with the most important child and repeat
• Done if both children are less important than the item or we’ve reached a leaf node

What is the run time?
DeleteMin: Run Time Analysis

- Run time is $O(\text{height of heap})$
- A heap is a complete binary tree
- Height of a complete binary tree of n nodes?
 - $\text{height} = \lceil \log_2(n) \rceil$
- Run time of `deleteMin` is $O(\log n)$
Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct
Insert: Maintain the Structure Property

• There is only one valid tree shape after we add one more node

• So put our new data there and then focus on restoring the heap property
Insert: Restore the heap property

Percolate up:
- Put new data in new location
- If parent is less important, swap with parent, and continue
- Done if parent is more important than item or reached root

What is the running time?
Like deleteMin, worst-case time proportional to tree height: $O(\log n)$
Binary Heap

- Operations
 - $O(\log n)$ insert
 - $O(\log n)$ deleteMin worst-case
 - Very good constant factors
 - If items arrive in random order, then insert is $O(1)$ on average
 - Because approx. 75% of nodes in bottom two rows
Summary

• **Priority Queue ADT:**
 - `insert` comparable object,
 - `deleteMin`

• **Binary heap data structure:**
 - Complete binary tree
 - Each node has less important priority value than its parent

• `insert` and `deleteMin` operations = $O(\text{height-of-tree}) = O(\log n)$
 - `insert`: put at new last position in tree and percolate-up
 - `deleteMin`: remove root, put last element at root and percolate-down
Array Representation of Binary Trees

From node i:
- Left child: $i \times 2$
- Right child: $i \times 2 + 1$
- Parent: $i / 2$

(wasting index 0 is convenient for the index arithmetic)

Implicit (array) implementation:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
Judging the array implementation

Pros:
• Non-data space: just index 0 and unused space on right
 – In conventional tree representation, one edge per node (except for root), so \(n-1 \) wasted space (like linked lists)
 – Array would waste more space if tree were not complete
• Multiplying and dividing by 2 is very fast (shift operations in hardware)
• Last used position is just index \(\text{size} \)

Cons:
• Same might-be-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Pros outweigh cons: min-heaps almost always use array implementation
void insert(int val) {
 if (size == arr.length-1)
 resize();
 size++;
 i = percolateUp(size, val);
 arr[i] = val;
}

int percolateUp(int hole, int val) {
 while (hole > 1 &&
 val < arr[hole/2])
 arr[hole] = arr[hole/2];
 hole = hole / 2;
}

return hole;

This pseudocode uses ints. In real use, you will have data nodes with priorities.
Pseudocode: deleteMin from binary heap

```cpp
int deleteMin() {
    if(isEmpty()) throw...
    ans = arr[1];
    hole = percolateDown
    (1,arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}

int percolateDown(int hole, int val) {
    while(2*hole <= size) {
        left  = 2*hole;
        right = left + 1;
        if(right > size ||
            arr[left] < arr[right])
            target = left;
        else
            target = right;
        if(arr[target] < val) {
            arr[hole] = arr[target];
            hole = target;
        } else
            break;
    }
    return hole;
}
```

![Binary heap diagram](image)
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

```
   16
   / \
  32   0
  / \  / \
16 32 0
```

```
+---+---+---+---+---+---+---+
|   | 16 | 32 |   |   |   |   |
+---+---+---+---+---+---+---+
  0  1  2  3  4  5  6  7
```
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

```
4   32   16   67
0   1   2   3   4   5   6   7
```

```
4
/ \
/   /\n32  16
/   /\n67  43 2
```
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>32</td>
<td>16</td>
<td>67</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
       4
      / \
     32 16
    /   / \
   67 105
```

```
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>32</td>
<td>16</td>
<td>67</td>
<td>105</td>
<td>43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Diagram of a binary search tree with values from 16 to 105.
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>32</th>
<th>16</th>
<th>67</th>
<th>105</th>
<th>43</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

```
4
32
32
67
105
43
16
```

```
4
32
32
67
105
43
16
```
Other operations

- **decreaseKey**: given pointer to object in priority queue (e.g., its array index), lower its priority value by $p$
  - Change priority and percolate up

- **increaseKey**: given pointer to object in priority queue (e.g., its array index), raise its priority value by $p$
  - Change priority and percolate down

- **remove**: given pointer to object in priority queue (e.g., its array index), remove it from the queue
  - **decreaseKey** with $p = \infty$, then deleteMin

Running time for all these operations?
**Build Heap**

- Suppose you have \( n \) items to put in a new (empty) priority queue
  - Call this operation `buildHeap`

- \( n \) inserts
  - Only choice if ADT doesn’t provide `buildHeap` explicitly
  - \( O(n \log n) \)

- Why would an ADT provide this unnecessary operation?
  - Convenience
  - Efficiency: an \( O(n) \) algorithm called Floyd’s Method
  - Common issue in ADT design: how many specialized operations
Floyd’s Method

1. Use $n$ items to make any complete tree you want
   - That is, put them in array indices 1,…,n

2. Treat it as a heap and fix the heap-order property
   - Bottom-up: percolate down starting at nodes one level up from leaves, work up toward the root

```c
void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}
```
Example

• In tree form for readability
  – Purple for node not less than descendants
    • heap-order problem
  – Notice no leaves are purple
  – Check/fix each non-leaf bottom-up (6 steps here)
Example

- Happens to already be less than children (er, child)
Example

- Percolate down (notice that moves 1 up)
Example

- Another nothing-to-do step
Example

- Percolate down as necessary (steps 4a and 4b)
Example

Step 5
Example

Step 6
But is it right?

• “Seems to work”
  – Let’s *prove* it restores the heap property (correctness)
  – Then let’s *prove* its running time (efficiency)

```cpp
void buildHeap() {
 for (i = size/2; i>0; i--)
 {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}
```
Correctness

Loop Invariant: For all \( j > i \), \( \text{arr}[j] \) is less than its children

- True initially: If \( j > \text{size}/2 \), then \( j \) is a leaf
  - Otherwise its left child would be at position \( > \text{size} \)
- True after one more iteration: loop body and \text{percolateDown} make \( \text{arr}[i] \) less than children without breaking the property for any descendants

So after the loop finishes, all nodes are less than their children
Efficiency

void buildHeap() {
    for (i = size/2; i > 0; i--) {
        val = arr[i];
        hole = percolateDown(i, val);
        arr[hole] = val;
    }
}

Easy argument: buildHeap is $O(n \log n)$ where $n$ is size

- $\frac{\text{size}}{2}$ loop iterations
- Each iteration does one percolateDown, each is $O(\log n)$

This is correct, but there is a more precise ("tighter") analysis of the algorithm…
Better argument: `buildHeap` is $O(n)$ where $n$ is `size`

- `size/2` total loop iterations: $O(n)$
- 1/2 the loop iterations percolate at most 1 step
- 1/4 the loop iterations percolate at most 2 steps
- 1/8 the loop iterations percolate at most 3 steps
- ...
- $\left(\frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \ldots\right) < 2$ (page 4 of Weiss)
  - So at most $2 \times \left(\frac{\text{size}}{2}\right)$ total percolate steps: $O(n)$
Lessons from `buildHeap`

- Without `buildHeap`, clients can implement their own in $O(n \log n)$ worst case

- By providing a specialized operation (with access to the internal data), we can do $O(n)$ worst case
  - Intuition: Most data is near a leaf, so better to percolate down

- Can analyze this algorithm for:
  - Correctness:
    - Non-trivial inductive proof using loop invariant
  - Efficiency:
    - First analysis easily proved it was $O(n \log n)$
    - Tighter analysis shows same algorithm is $O(n)$
Other branching factors

- $d$-heaps: have $d$ children instead of 2
  - Makes heaps shallower

- Homework: Implement a 3-heap
  - Just have three children instead of 2
  - Still use an array with all positions from 1...heap-size used

<table>
<thead>
<tr>
<th>Index</th>
<th>Children Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,3,4</td>
</tr>
<tr>
<td>2</td>
<td>5,6,7</td>
</tr>
<tr>
<td>3</td>
<td>8,9,10</td>
</tr>
<tr>
<td>4</td>
<td>11,12,13</td>
</tr>
<tr>
<td>5</td>
<td>14,15,16</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>