CSE373: Data Structures & Algorithms

Lecture 7: AVL Trees

Lauren Milne
Summer 2015
How can we make a BST efficient?

Observation
• BST: the shallower the better!

Solution: Require a Balance Condition that
1. Ensures depth is always $O(\log n)$
2. Is efficient to maintain

• When we build the tree, make sure it’s balanced.
• BUT…Balancing a tree only at build time is insufficient.
• We also need to also keep the tree balanced as we perform operations.
Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes

 Too weak!
 Height mismatch example:

2. Left and right subtrees of the root have equal height

 Too weak!
 Double chain example:
Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes

 Too strong!
 Only perfect trees (\(2^n - 1\) nodes)

4. Left and right subtrees of every node have equal height

 Too strong!
 Only perfect trees (\(2^n - 1\) nodes)
The AVL Balance Condition

Left and right subtrees of every node have \textit{heights} differing by at most 1

\textit{Definition:} \(\text{balance}(\text{node}) = \text{height}(\text{node}.\text{left}) - \text{height}(\text{node}.\text{right}) \)

\textit{AVL property:} for every node \(x \), \(-1 \leq \text{balance}(x) \leq 1 \)

- Ensures small depth
 - Will prove this by showing that an AVL tree of height \(h \) must have a number of nodes \textit{exponential} in \(h \)
 (\textit{i.e. height must be logarithmic in number of nodes})

- Efficient to maintain
 - Using single and double rotations
Announcements

• HW2 due 10:59 on Friday via Dropbox.
• Midterm next Friday, sample midterms posted online
• Last lecture: Binary Search Trees
• Today... AVL Trees
BST: Efficiency of Operations?

- Problem: operations may be inefficient if BST is unbalanced.
 - Find, insert, delete
 - $O(n)$ in the worst case
 - BuildTree
 - $O(n^2)$ in the worst case
The AVL Tree Data Structure

An AVL tree is a self-balancing binary search tree.

Structural properties

1. Binary tree property (same as BST)
2. Order property (same as for BST)

3. Balance property:
 balance\((node) \) = height\((node.\text{left}) \) – height\((node.\text{right}) \)

Result: **Worst-case** depth is $O(\log n)$
Is this an AVL tree?

Yes! Because the left and right subtrees of every node have heights differing by at most 1
Is this an AVL tree?

Nope! The left and right subtrees of some nodes (e.g. 1, 4, 6) have heights that differ by more than 1.
Good news

Because height of AVL tree is $O(\log(n))$, then find is $O(\log n)$

But as we insert and delete elements, we need to:
1. Track balance
2. Detect imbalance
3. Restore balance
An AVL Tree

Node object

10

key

...

value

3

height

children

Track height at all times!
AVL tree operations

• **AVL find:**
 – Same as BST find

• **AVL insert:**
 – First BST insert, *then* check balance and potentially “fix” the AVL tree
 – Four different imbalance cases

• **AVL delete:**
 – The “easy way” is lazy deletion
 – Otherwise, do the deletion and then check for several imbalance cases (we will skip this)
Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the insertion may (or may not) have changed the node’s height
3. So after insertion in a subtree, detect height imbalance and perform a rotation to restore balance at that node
4. Always look for the deepest node that is unbalanced
Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the insertion may (or may not) have changed the node’s height
3. So after insertion in a subtree, detect height imbalance and *perform a rotation* to restore balance at that node
4. Always look for the deepest node that is unbalanced
Case #1: Example

Insert(6)
Insert(3)
Insert(1)

Third insertion violates balance property
-happens to be at the root

What is the only way to fix this?
Fix: Apply “Single Rotation”

- **Single rotation**: The basic operation we’ll use to rebalance
 - Move child of unbalanced node into parent position
 - Parent becomes the “other” child (always okay in a BST!)
 - Other subtrees move in only way BST allows (next slide)

AVL Property violated at node 6

Child’s new-height = old-height-before-insert
The example generalized

• Insertion into left-left grandchild causes an imbalance
 – 1 of 4 possible imbalance causes (other 3 coming up!)
• Creates an imbalance in the AVL tree (specifically a is imbalanced)
The general left-left case

- So we rotate at a
 - Move child of unbalanced node into parent position
 - Parent becomes the “other” child
 - Other sub-trees move in the only way BST allows:
 - using BST facts: $X < b < Y < a < Z$

- A single rotation restores balance at the node
 - To same height as before insertion, so ancestors now balanced
Another example: \texttt{insert(16)}
The general right-right case

- Mirror image to left-left case, so you rotate the other way
 - Exact same concept, but need different code
Right-right Imbalance
Right-right Imbalance
Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree.

Simple example: \texttt{insert(1), insert(6), insert(3)}

– First wrong idea: single rotation like we did for left-left.

Violates order property!
Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: \texttt{insert(1), insert(6), insert(3)}

– Second wrong idea: single rotation on the child of the unbalanced node

\begin{itemize}
 \item \texttt{insert(1), insert(6), insert(3)}
 \item Second wrong idea: single rotation on the child of the unbalanced node
\end{itemize}
Sometimes two wrongs make a right 😊

- First idea violated the order property
- Second idea didn’t fix balance
- But if we do both single rotations, starting with the second, it works! (And not just for this example.)

- **Double rotation:**
 1. Rotate problematic child and grandchild
 2. Then rotate between self and new child
The general right-left case
Comments

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert
 - So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:

Easier to remember than you may think:
Move c to grandparent’s position
Put a, b, X, U, V, and Z in the only legal positions for a BST
The last case: left-right

- Mirror image of right-left
 - Again, no new concepts, only new code to write
Insert, summarized

- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
 - Node’s left-left grandchild is too tall
 - Node’s left-right grandchild is too tall
 - Node’s right-left grandchild is too tall
 - Node’s right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallest-unbalanced subtree has the same height as before the insertion
 - So all ancestors are now balanced
AVL Trees efficiency

- Worst-case complexity of **find**: $O(\log n)$
 - Tree is balanced

- Worst-case complexity of **insert**: $O(\log n)$
 - Tree starts balanced
 - A rotation is $O(1)$ and there’s an $O(\log n)$ path to root
 - Tree ends balanced

- Worst-case complexity of **buildTree**: $O(n \log n)$

Takes some more rotation action to handle **delete**…
Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always balanced
2. Height balancing adds no more than a constant factor to the speed of insert and delete

Arguments against AVL trees:

1. Difficult to program & debug [but done once in a library!]
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. If amortized (later, I promise) logarithmic time is enough, use splay trees (also in the text)