CSE373: Data Structures & Algorithms
Lecture 6: Binary Search Trees

Lauren Milne
Summer 2015
Announcements

• HW2 due 10:59 PM Friday
• Going to try to rearrange session times.
Previously on CSE 373

– Dictionary ADT
 • stores (key, value) pairs
 • find, insert, delete

– Trees
 • Terminology
 • Binary Trees
Reminder: Tree terminology

Node / Vertex

Left subtree

Right subtree

Edges

Root

Leaves
Recall: **Height** of a tree is the **maximum** number of edges from the **root** to a **leaf**.

What is the **height** of this tree?

- A
 - Height = 0
 - B
 - Height = 1

What is the **depth** of node G?

 - Depth = 2

What is the **depth** of node L?

 - Depth = 4

Height = 4
Binary Trees

- **Binary tree**: Each node has at most 2 children (branching factor 2)

- Binary tree is
 - A root (*with data*)
 - A left subtree (*may be empty*)
 - A right subtree (*may be empty*)

- Special Cases

```
  A
 / \   /
B   C    D E F
     / \   /  \
    G     E F G
```

Complete Tree *Perfect Tree*
Tree Traversals

A *traversal* is an order for visiting all the nodes of a tree

- **Pre-order**: root, left subtree, right subtree

 \[+ \times 2 \quad 4 \quad 5 \]

- **In-order**: left subtree, root, right subtree

 \[2 \times 4 \quad + \quad 5 \]

- **Post-order**: left subtree, right subtree, root

 \[2 \quad 4 \quad \times \quad 5 \quad + \]
Binary Search Tree (BST) Data Structure

- **Structure property** (binary tree)
 - Each node has ≤ 2 children
 - Result: keeps operations simple

- **Order property**
 - All keys in left subtree smaller than node’s key
 - All keys in right subtree larger than node’s key
 - Result: easy to find any given key

A binary search tree is a type of binary tree (but not all binary trees are binary search trees!)
Are these BSTs?
Find in BST, Recursive

Data `find(Key key, Node root)`{
 if(root == null)
 return null;
 if(key < root.key)
 return find(key,root.left);
 if(key > root.key)
 return find(key,root.right);
 return root.data;
}

What is the running time?

Worst case running time is O(n).
- Happens if the tree is very lopsided (e.g. list)
Find in BST, Iterative

```java
Data find(Key key, Node root) {
    while (root != null && root.key != key) {
        if (key < root.key) {
            root = root.left;
        } else { // key > root.key
            root = root.right;
        }
    }
    if (root == null) {
        return null;
    } else { // root != null
        return root.data;
    }
}
```

Worst case running time is $O(n)$.
- Happens if the tree is very lopsided (e.g. list)
Bonus: Other BST “Finding” Operations

- **FindMin**: Find *minimum* node
 - Left-most node

- **FindMax**: Find *maximum* node
 - Right-most node
Insert in BST

insert(13)
insert(8)
insert(31)

(New) insertions happen only at leaves – easy!

Again… worst case running time is $O(n)$, which may happen if the tree is not balanced.
Deletion in BST

Why might deletion be harder than insertion?
Deletion in BST

- Basic idea: find the node to be removed, then “fix” the tree so that it is still a binary search tree

- Three potential cases to fix:
 - Node has no children (leaf)
 - Node has one child
 - Node has two children
Deletion – The Leaf Case

delete(17)
Deletion – The One Child Case

delete(15)
Deletion – The One Child Case

delete(15)
Deletion – The Two Child Case

What can we replace 5 with?

delete(5)
Deletion – The Two Child Case

What can we replace the node with?

Options:
- *successor* minimum node from right subtree
 \[
 \text{findMin}(\text{node.right})
 \]
- *predecessor* maximum node from left subtree
 \[
 \text{findMax}(\text{node.left})
 \]
Deletion: The Two Child Case (example)

delete(23)
Lazy Deletion

• Lazy deletion can work well for a BST
 – Simpler
 – Can do “real deletions” later as a batch
 – Some inserts can just “undelete” a tree node

• But
 – Can waste space and slow down find operations
 – Make some operations more complicated:
 • e.g., findMin and findMax?
BuildTree for BST

- Let’s consider `buildTree`
 - Insert all, starting from an empty tree

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
 - If inserted in given order, what is the tree?
 - What big-O runtime for `buildTree` on this sorted input?
 - Is inserting in the reverse order any better?

\[
O(n^2)
\]
BuildTree for BST

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- What we if could somehow re-arrange them
 - median first, then left median, right median, etc.
 - 5, 3, 7, 2, 1, 4, 8, 6, 9
- What tree does that give us?
- What big-O runtime?
 - $O(n \log n)$, definitely better
- So the order the values come in is important!