Today’s Outline

Announcements
- Homework 1 due TODAY at 10:59pm 😊
- Homework 2 out
 - Due online next Friday 10:59 pm

Today’s Topics
• Finish Asymptotic Analysis
• Dictionary ADT (a.k.a. Map): associate keys with values
 – Extremely common
• Binary Trees
Summary of Asymptotic Analysis

Analysis can be about:

• The problem or the algorithm (usually algorithm)
• Time or space (usually time)
• Best-, worst-, or average-case (usually worst)
• Upper-, lower-, or tight-bound (usually upper)

• The most common thing we will do is give an O upper bound to the worst-case running time of an algorithm.
Addendum: Timing vs. Big-O Summary

• Big-O
 – Examine the algorithm itself, not the implementation
 – Reason about performance as a function of n
 – For small n, an algorithm with worse asymptotic complexity might be faster

• Timing
 – Compare implementations
 – Focus on data sets other than worst case
 – Determine what the constants actually are
Let’s take a breath

• So far we’ve covered
 – Simple ADTs: stacks, queues, lists
 – Some math (proof by induction)
 – Algorithm analysis
 – Asymptotic notation (Big-Oh)

• Coming up….
 – Many more ADTs!
 • Starting with dictionaries
The Dictionary (a.k.a. Map) ADT

• Data:
 – set of (key, value) pairs
 – keys must be comparable

• Operations:
 – insert(key, value)
 – find(key)
 – delete(key)
 – ...

 \[\text{insert(lauren, ...)}\]
 \[\text{find(mert)}\]
 \[\text{Mert Saglam, ...}\]

• Lauren Milne
 OH: Mon 1.30-2.30

• Mert Saglam
 OH: Wed 4-5

• Mauricio Hernandez
 OH: Fri 12:00-1:00
A Modest Few Uses

Used to store information with some key and retrieve it efficiently
 – Lots of programs do that!

- Search: phone directories
- Networks: router tables
- Operating systems: page tables
- Compilers: symbol tables
- Databases: dictionaries with other nice properties
- Biology: genome maps
- …

Possibly the most widely used ADT
Simple implementations

For dictionary with n key/value pairs

- Unsorted linked-list
 - $O(1)\ast$ insert
 - $O(n)$ find
 - $O(n)$ delete

- Unsorted array
 - $O(1)\ast$ insert
 - $O(n)$ find
 - $O(n)$ delete

- Sorted linked list
 - $O(n)$ insert
 - $O(n)$ find
 - $O(n)$ delete

- Sorted array
 - $O(n)$ insert
 - $O(\log n)$ find
 - $O(n)$ delete

* Unless we need to check for duplicates

We’ll see a Binary Search Tree (BST) probably does better but not in the worst case (unless we keep it balanced)
Lazy Deletion

A general technique for making delete as fast as find:
 – Instead of actually removing the item just mark it deleted

Pros:
 – Simpler
 – Can do removals later in batches
 – If re-added soon thereafter, just unmark the deletion

Cons:
 – Extra space for the “is-it-deleted” flag
 – Data structure full of deleted nodes wastes space
 – May complicate other operations
Better dictionary data structures

There are many good data structures for (large) dictionaries

1. Binary trees
2. AVL trees
 - Binary search trees with guaranteed balancing
3. B-Trees
 - Also always balanced, but different and shallower
 - B-Trees are not the same as Binary Trees
 • B-Trees generally have large branching factor
4. Hashtables
 - Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)
Tree terms

- Root (tree)
- Leaves (tree)
- Children (node)
- Parent (node)
- Siblings (node)
- Ancestors (node)
- Descendents (node)
- Subtree (node)

- Depth (node)
- Height (tree)
- Degree (node)
- Branching factor (tree)
More tree terms

• There are many kinds of trees
 – Binary trees, linked lists, etc…

• There are many kinds of binary trees
 – binary search tree, binary heaps

• A tree can be balanced or not
 – A balanced tree with n nodes has a height of $O(\log n)$
 – Use different “balance conditions” to achieve this
Kinds of trees

Certain terms define trees with specific structure

- **Binary tree**: Each node has at most 2 children (branching factor 2)
- **n-ary tree**: Each node has at most n children (branching factor n)
- **Perfect tree**: Each row completely full
- **Complete tree**: Each row completely full except maybe the bottom row, which is filled from left to right

What is the height of a **perfect binary** tree with n nodes?
A **complete 14-ary** tree?
Binary Trees

- **Binary tree**: Each node has at most 2 children (branching factor 2)

- Binary tree is
 - A root *(with data)*
 - A left subtree *(may be empty)*
 - A right subtree *(may be empty)*

- Representation:

<table>
<thead>
<tr>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>left pointer</td>
</tr>
</tbody>
</table>

- For a dictionary, data will include a key and a value
Binary Tree Representation
Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
- max # of nodes: $2^{h+1} - 1$
- max # of leaves: 2^h
- min # of leaves: 1
- min # of nodes: $h + 1$

For n nodes, we cannot do better than $O(\log n)$ height and we want to avoid $O(n)$ height
Calculating height

What is the height of a tree with root \texttt{root}?

\begin{verbatim}
int treeHeight(Node root) {
 ???
}
\end{verbatim}
Calculating height

What is the height of a tree with root \(\text{root} \)?

```java
int treeHeight(Node root) {
    if (root == null)
        return -1;
    return 1 + max(treeHeight(root.left),
                    treeHeight(root.right));
}
```

Running time for tree with \(n \) nodes:
\(O(n) \) – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes; much easier to use recursion’s call stack
Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- **Pre-order:** root, left subtree, right subtree
- **In-order:** left subtree, root, right subtree
- **Post-order:** left subtree, right subtree, root

(an expression tree)
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

= current node = processing (on the call stack)
= completed node ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

![Diagram of tree traversal]

- **A** = current node
- **A** = processing (on the call stack)
- **A** = completed node
- ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- **A** = current node
- **A** = processing (on the call stack)
- **A** = completed node
- ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- **A** = current node
- **A** = processing (on the call stack)
- **A** = completed node
- ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

= current node = processing (on the call stack)

= completed node ✓ = element has been processed
void inOrderTraversal(Node t) {
 if (t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

= current node = processing (on the call stack)

= completed node ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- **A** = current node
- **A** = processing (on the call stack)
- **A** = completed node
- ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

- **A** = current node
- **A** = processing (on the call stack)
- **A** = completed node
- ✓ = element has been processed
More on traversals

```java
void inOrderTraversal(Node t) {
  if (t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
  }
}
```

- A = current node
- A = processing (on the call stack)
- A = completed node
- ✓ = element has been processed
Tree Traversals

A *traversal* is an order for visiting all the nodes of a tree

- **Pre-order:** root, left subtree, right subtree

 \[+ \times 2 \, 4 \, 5\]

- **In-order:** left subtree, root, right subtree

 \[2 \times 4 \, + \, 5\]

- **Post-order:** left subtree, right subtree, root

 \[2 \, 4 \times 5 \, +\]

(an expression tree)