CSE373: Data Structures and Algorithms
Lecture 4: Asymptotic Analysis

Lauren Milne
Summer 2015
Administrivia

• Questions on Homework 1? Due Wednesday at 10:59 pm.

• TA Session tomorrow, mostly on induction

• Today
 – Algorithmic Analysis!
Algorithm Analysis

• As the size of an algorithm’s input grows, we want to know
 – How long it takes to run (time)
 – How much room it takes to run (space)
• We use Big-O notation to compare algorithm runtimes
 – Ignore constants and lower order terms
 – Independent of implementation
 – Big-O of \((n^3 + 10n\log^2 n + 5)\)?
• Make assumptions
 – “basic” operations take constant time
• Always analyze worst possible case
 – Slower branch of conditional
 – Worst possible input
Example

Find an integer in a *sorted* array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    ???
}
```
Linear search

Find an integer in a sorted array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    for (int i = 0; i < arr.length; ++i)
        if (arr[i] == k)
            return true;
    return false;
}
```

Best case?
- k is in arr[0]
- c_1 steps
 - $O(1)$

Worst case?
- k is not in arr
- $c_2 \times (\text{arr.length})$
 - $O(\text{arr.length})$
Binary search

Find an integer in a sorted array

```java
// requires sorted array
// returns whether k is in array
boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
    if(lo==hi) return false;
    if(arr[mid] == k) return true;
    if(arr[mid] < k) return help(arr, k, mid+1, hi);
    else return help(arr, k, lo, mid);
}
```
Binary search

Best case:
\[c_1 \text{ steps } = O(1) \]

Worst case:
\[T(n) = c_2 + T(n/2) \] where \(c_2 \) is constant and \(n \) is \(hi-lo \)
\[O(\log n) \] where \(n \) is \texttt{arr.length} \ (\textit{recurrence equation})

```java
// requires sorted array
// returns whether k is in array
boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;
    if (lo==hi) return false;
    if (arr[mid]==k) return true;
    if (arr[mid]<k) return help(arr, k, mid+1, hi);
    else return help(arr, k, lo, mid);
}
```
Solving Recurrence Relations

1. Determine the recurrence relation and the base case.
 - \[T(n) = c2 + T(n/2) \quad T(1) = c1 \]

What is \(T(n/2) \)?

What is \(T(n/4) \)?
Solving Recurrence Relations

1. Determine the recurrence relation and the base case.
 - \(T(n) = c_2 + T(n/2) \quad T(1) = c_1 \)

2. “Expand” the original relation to find an equivalent general expression \textit{in terms of the number of expansions “k”}.
 - \(T(n) = c_2 + c_2 + T(n/4) \)
 \[= c_2 + c_2 + c_2 + T(n/8) \]
 \[= ... \]
 \[= c_2(k) + T(n/(2^k)) \]

3. Find a closed-form expression: find \textit{the number of expansions} to reach the base case
 - \(n/(2^k) = 1 \) means \(n = 2^k \) means \(k = \log_2 n \)
 - So \(T(n) = c_2 \log_2 n + T(1) \)
 - So \(T(n) = c_2 \log_2 n + c_1 \)
 - So \(T(n) \) is \(O(\log n) \)
Ignoring constant factors

• So binary search is $O(\log n)$ and linear is $O(n)$
 – But which is faster?

• Depends on constant factors
 – How many assignments, additions, etc. for each n
 • E.g. $T(n) = 5,000,000n$ vs. $T(n) = 5n^2$
 – And could depend on overhead unrelated to n
 • E.g. $T(n) = 5,000,000 + \log n$ vs. $T(n) = 10 + n$

• But there exists some n_0 such that for all $n > n_0$ binary search wins
Example

- Let’s try to “help” linear search
 - 100x faster computer
 - 3x faster compiler/language
 - 2x smarter programmer (eliminate half the work)
 - Each iteration is 600x as fast as in binary search
Big-O, formally

Definition:

\[g(n) \text{ is in } O(f(n)) \text{ if there exists positive constants } c \text{ and } n_0 \text{ such that } g(n) \leq c f(n) \text{ for all } n \geq n_0 \]
Big-O, formally

Definition:

\[
g(n) \text{ is in } O(f(n)) \text{ if there exists positive constants } c \text{ and } n_0 \text{ such that } \forall n \
\]
\[
g(n) \leq c f(n) \text{ for all } n \geq n_0
\]

- To show \(g(n) \) is in \(O(f(n)) \),
 - pick a \(c \) large enough to “cover the constant factors”
 - \(n_0 \) large enough to “cover the lower-order terms”
- Example:
 - Let \(g(n) = 3n^2 + 17 \) and \(f(n) = n^2 \)

 What could we pick for \(c \) and \(n_0 \)?
 - \(c = 5 \) and \(n_0 = 10 \)
 - \((3 \times 10^2) + 17 \leq 5 \times 10^2 \) so \(3n^2 + 17 \) is \(O(n^2) \)
Example 1, using formal definition

- Let $g(n) = 1000n$ and $f(n) = n^2$
 - To prove $g(n)$ is in $O(f(n))$, find a valid c and n_0
 - The “cross-over point” is $n=1000$
 - $g(n) = 1000 \times 1000$ and $f(n) = 1000^2$
 - So we can choose $n_0=1000$ and $c=1$
 - Many other possible choices, e.g., larger n_0 and/or c

Definition: $g(n)$ is in $O(f(n))$ if there exist positive constants c and n_0 such that

$$g(n) \leq c \cdot f(n) \text{ for all } n \geq n_0$$
Example 2, using formal definition

- Let \(g(n) = n^4 \) and \(f(n) = 2^n \)
 - To prove \(g(n) \) is in \(O(f(n)) \), find a valid \(c \) and \(n_0 \)
 - We can choose \(n_0=20 \) and \(c=1 \)
 - \(g(n) = 20^4 \) vs. \(f(n) = 1 \times 2^{20} \)

Definition: \(g(n) \) is in \(O(f(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that

\[
g(n) \leq c f(n) \quad \text{for all } n \geq n_0
\]
What’s with the c?

- The constant multiplier c is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity.
- Consider:

 $g(n) = 7n + 5$
 $f(n) = n$

- These have the same asymptotic behavior (linear).
 - So $g(n)$ is in $O(f(n))$ even through $g(n)$ is always larger.
 - The c allows us to provide a coefficient so that $g(n) \leq c f(n)$.

- In this example:
 - To prove $g(n)$ is in $O(f(n))$, have $c = 12$, $n_0 = 1$

 $(7*1) + 5 \leq 12*1$
What you can drop

• Eliminate coefficients because we don’t have units anyway
 – $3n^2$ versus $5n^2$ doesn’t mean anything when we have not specified the cost of constant-time operations

• Eliminate low-order terms because they have vanishingly small impact as n grows

• Do NOT ignore constants that are not multipliers
 – n^3 is not $O(n^2)$
 – 3^n is not $O(2^n)$
More Asymptotic Notation

• Upper bound: $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
 – $g(n)$ is in $O(f(n))$ if there exist constants c and n_0 such that $g(n) \leq c f(n)$ for all $n \geq n_0$

• Lower bound: $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
 – $g(n)$ is in $\Omega(f(n))$ if there exist constants c and n_0 such that $g(n) \geq c f(n)$ for all $n \geq n_0$

• Tight bound: $\theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$
 – $g(n)$ is in $\theta(f(n))$ if both $g(n)$ is in $O(f(n))$ and $g(n)$ is in $\Omega(f(n))$
Correct terms, in theory

A common error is to say $O(f(n))$ when you mean $\theta(f(n))$
- A linear algorithm is in both $O(n)$ and $O(n^5)$
- Better to say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:
- “little-oh”: intersection of “big-Oh” and not “big-Theta”
 - For all c, there exists an n_0 such that… \leq
 - Example: array sum is $o(n^2)$ but not $o(n)$
- “little-omega”: intersection of “big-Omega” and not “big-Theta”
 - For all c, there exists an n_0 such that… \geq
 - Example: array sum is $\omega(\log n)$ but not $\omega(n)$
Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

- We generally will give an O upper bound to the worst-case running time of an algorithm
Big-O Caveats

• Asymptotic complexity focuses on behavior for large n

• You can be misled about trade-offs using it

• Example: $n^{1/10}$ vs. $\log n$
 – Asymptotically $n^{1/10}$ grows more quickly
 – “Cross-over” point is around 5×10^{17}
 – So for any smaller input, prefer $n^{1/10}$

• For small n, an algorithm with worse asymptotic complexity might be faster
Addendum: Timing vs. Big-O Summary

• Big-O
 – Examine the algorithm itself, not the implementation
 – Reason about performance as a function of n

• Timing
 – Compare implementations
 – Focus on data sets other than worst case
 – Determine what the constants actually are
Bubble Sort

```java
private static void bubbleSort(int[] intArray) {
    int n = intArray.length;
    int temp = 0;
    for(int i=0; i < n; i++) {
        for(int j=1; j < (n-i); j++) {
            if(intArray[j-1] > intArray[j]) {
                //swap the elements!
                temp = intArray[j-1];
                intArray[j-1] = intArray[j];
                intArray[j] = temp;
            }
        }
    }
}
```

Number of iterations
0+1+2+3+..+(n-2)+(n-1) = n(n-1)/2

Each iteration takes \(O(n^2)\)