Announcements

• Homework 3 graded and comments out
• Homework 5 is out
 – Due next Wednesday
 – Can be done with partners
 • List partner on files
So far

• We’ve figured out how to
 – Find the shortest paths between a vertex and all other vertices
 • Breadth First Search (unweighted graph)
 • Dijsktra (weighted graph)
 – Find a spanning tree on an unweighted graph
 • Graph Traversal (we did DFS)
 • Pick random edges and see if it connects the graph (use Union Find)
• Next up
 – Find a minimum spanning tree on a weighted graph
 • Prim’s algorithm
 • Kruskal’s algorithm
Minimum Spanning Trees

The minimum-spanning-tree problem

- Given a weighted undirected graph, compute a spanning tree of minimum weight

Given an undirected graph $G=(V,E)$, find a graph $G'=(V, E')$ such that:

- E' is a subset of E
- $|E'| = |V| - 1$
- G' is connected

G' is a minimum spanning tree.
Two different approaches

Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!
Prim’s Algorithm Idea

Idea: Grow a tree by picking a vertex from the unknown set that has the smallest cost. Here cost = cost of the edge that connects that vertex to the known set. *Pick the vertex with the smallest cost that connects “known” to “unknown.”*

A node-based greedy algorithm

Builds MST by greedily adding nodes

Prim’s vs. Dijkstra’s

Recall:

Dijkstra picked the unknown vertex with smallest cost where cost = distance to the source.

Prim’s pick the unknown vertex with smallest cost where cost = distance from this vertex to the known set (in other words, the cost of the smallest edge connecting this vertex to the known set)

Otherwise identical 😊
Prim’s Algorithm

1. For each node v, set $v.cost = \infty$ and $v.known = false$
2. Choose any node v
 a) Mark v as known
 b) For each edge (v,u) with weight w, set $u.cost = w$ and $u.prev = v$
3. While there are unknown nodes in the graph
 a) Select the unknown node v with lowest cost
 b) Mark v as known and add $(v, v.prev)$ to output
 c) For each edge (v,u) with weight w,

 \[
 \text{if}(w < u.cost) \{
 \text{\quad} u.cost = w;
 \text{\quad} u.prev = v;
 \}\]
Prim’s Example

![Graph with vertices and edges labeled]

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prim’s Example

A

B

C

D

F

E

G

vertex	known?	cost	prev
A | Y | 0 |
B | 2 | A |
C | 2 | A |
D | 1 | A |
E | ?? |
F | ?? |
G | ?? |
Prim’s Example

A vertex known? cost prev
A Y 0
B 2 A
C 1 D
D Y 1 A
E 1 D
F 6 D
G 5 D
Prim’s Example

vertex	known?	cost	prev
A | Y | 0 |
B | | 2 | A
C | Y | 1 | D
D | Y | 1 | A
E | | 1 | D
F | | 2 | C
G | | 5 | D
Prim’s Example

The diagram shows a graph with vertices labeled A, B, C, D, E, F, and G. The edges are labeled with costs, and some vertices are marked as known with a Y, while others are marked with a 0.

The table lists the vertices, their known status, cost, and previous vertex:

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
Prim’s Example

![Graph diagram]

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
Prim’s Example

![Graph with vertices labeled A, B, C, D, E, F, G and edges with costs]
Prim’s Example

```
<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
```
Analysis

• Correctness
 – A bit tricky
 – Intuitively similar to Dijkstra

• Run-time
 – Same as Dijkstra
 – $O(|E| \log |V|)$ using a priority queue
 • Costs/priorities are just edge-costs, not path-costs
A cable company wants to connect five villages to their network which currently extends to the town of Avonford. What is the minimum length of cable needed?

Another Example

![Diagram of five villages connected by cables with distances labeled]

Avonford Brinleigh Fingley Cornwell Donster Edan

Distances:
- Avonford to Brinleigh: 3
- Brinleigh to Fingley: 8
- Fingley to Edan: 7
- Edan to Cornwell: 5
- Cornwell to Donster: 4
- Donster to Fingley: 6
- Fingley to Avonford: 8

The minimum length of cable needed is calculated by finding the shortest path that connects all five villages.

18
Prim’s Algorithm

Model the situation as a graph and find the MST that connects all the villages (nodes).
Prim’s Algorithm

Select any vertex

A

Select the shortest edge connected to that vertex

AB 3
Prim’s Algorithm

Select the shortest edge that connects an unknown vertex to any known vertex.

AE 4
Prim’s Algorithm

Select the shortest edge that connects an unknown vertex to any known vertex.

ED 2
Prim’s Algorithm

Select the shortest edge that connects an unknown vertex to any known vertex.

DC 4
Prim’s Algorithm

Select the shortest edge that connects an unknown vertex to any known vertex.

EF 5
Prim’s Algorithm

All vertices have been connected.

The solution is

AB 3
AE 4
ED 2
DC 4
EF 5

Total weight of tree: 18
Minimum Spanning Tree Algorithms

• Prim’s Algorithm for Minimum Spanning Tree
 – Similar idea to Dijkstra’s Algorithm but for MSTs.
 – Both based on expanding cloud of known vertices

• Kruskal’s Algorithm for Minimum Spanning Tree
 – Another, but different, greedy MST algorithm.
 – Uses the Union-Find data structure.
Kruskal’s Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

An edge-based greedy algorithm
Builds MST by greedily adding edges

G=(V,E)
Kruskal’s Algorithm Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set
3. While output size < |V|-1
 - Consider next smallest edge \((u,v)\)
 - if \(\text{find}(u)\) and \(\text{find}(v)\) indicate \(u\) and \(v\) are in different sets
 • output \((u,v)\)
 • \(\text{union}(\text{find}(u),\text{find}(v))\)

invariant:

\(u\) and \(v\) in same set if and only if connected in output-so-far
Kruskal’s Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest
Kruskal’s Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest
Kruskal’s Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest
Kruskal’s Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest
Kruskal’s Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest
Kruskal’s Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest
Kruskal’s Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest
Kruskal’s Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest
Kruskal’s Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest
Kruskal’s Algorithm Analysis

Idea: Grow a forest out of edges that do not grow a cycle
But now consider the edges in order by weight

So:

- Sort edges: $O(|E| \log |E|)$ (next lecture)
- Iterate through edges using union-find for cycle detection almost $O(|E|)$

Somewhat better:

- Build min-heap with edges $O(|E|)$ (Floyd’s algorithm)
- Iterate through edges using union-find for cycle detection and \texttt{deleteMin} to get next edge $O(|E| \log |E|)$
- Not better \textit{worst-case} asymptotically, but often stop long before considering all edges.
Kruskal’s Algorithm

List the edges in order of size:

- ED 2
- AB 3
- AE 4
- CD 4
- BC 5
- EF 5
- CF 6
- AF 7
- BF 8
- CF 8
Kruskal’s Algorithm

Select the edge with min cost

ED 2
Select the next minimum cost edge that does not create a cycle

Kruskal’s Algorithm

ED 2
AB 3
Kruskal’s Algorithm

Select the next minimum cost edge that does not create a cycle

ED 2
AB 3
CD 4 (or AE 4)
Kruskal’s Algorithm

Select the next minimum cost edge that does not create a cycle

ED 2
AB 3
CD 4
AE 4
Select the next minimum cost edge that does not create a cycle.

ED 2
AB 3
CD 4
AE 4
BC 5 – forms a cycle
EF 5
Kruskal’s Algorithm

All vertices have been connected.

The solution is

ED 2
AB 3
CD 4
AE 4
EF 5

Total weight of tree: 18
Done with graph algorithms!

Next lecture…

• Sorting
• More sorting
• Even more sorting

😊
Homework 5

• Due 11pm next Wednesday
• You may work with a partner
• Create graph representation in MyGraph.java
 – adjacency list or adjacency matrix
 – don’t change constructor!
 – deal with edge cases/exceptions as outlined in html
 – probably want to use map to look up info about some vertex
• Compute shortestPath() using Dijkstra’s
 – not required to use priority queue to store un-explored vertices
 – use equals, not == to determine if same vertex, FindPaths()
 create copies of vertices
 – finish FindPaths.java so it prints correct output
• Test and Readme