CSE373: Data Structures & Algorithms

Lecture 17: Dijkstra’s Algorithm

Lauren Milne
Summer 2015
Announcements

- Homework 4 due tonight
- Homework 5 out today
Dijkstra’s Algorithm: Lowest cost paths

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
 - Pick closest unknown vertex v
 - Add it to the “cloud” of known vertices
 - Update distances for nodes with edges from v
- That’s it!
The Algorithm

1. For each node \(v \), set \(v\.cost = \infty \) and \(v\.known = \text{false} \)
2. Set \(\text{source}.cost = 0 \)
3. While there are unknown nodes in the graph
 a) Select the unknown node \(v \) with lowest cost
 b) Mark \(v \) as known
 c) For each edge \((v,u)\) with weight \(w \),
 \[
 \begin{align*}
 c1 &= v\.cost + w \quad // \text{cost of best path through } v \text{ to } u \\
 c2 &= u\.cost \quad // \text{cost of best path to } u \text{ previously known}
 \end{align*}
 \]
 if\((c1 < c2)\){ // if the path through \(v \) is better
 \[
 \begin{align*}
 u\.cost &= c1 \\
 u\.path &= v \quad // \text{for computing actual paths}
 \end{align*}
 \}
A Greedy Algorithm

• Dijkstra’s algorithm is an example of a greedy algorithm:
 – At each step, always does what seems best at that step
 • A locally optimal step, not necessarily globally optimal
 – Once a vertex is known, it is not revisited
 • Turns out to be globally optimal (for this problem)
Where are we?

• Had a problem: Compute shortest paths in a weighted graph with no negative weights

• Learned an algorithm: Dijkstra’s algorithm

• What should we do after learning an algorithm?
 – Prove it is correct
 • Did this last time, not doing it again
 – Analyze its efficiency
 • Will do better by using a data structure we learned earlier!
Efficiency, first approach

Use pseudocode to determine asymptotic run-time
 – Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=∞, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
      if(!a.known)
        if(b.cost + weight((b,a)) < a.cost){
          a.cost = b.cost + weight((b,a))
          a.path = b
        }
  }
}
```
Efficiency, first approach

Use pseudocode to determine asymptotic run-time
 - Notice each edge is processed only once

```java
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```

- $O(|V|)$
- $O(|V|^2)$
- $O(|E|)$
- $O(|V|^2)$
Improving asymptotic running time

So far: $O(|V|^2)$

We had a similar “problem” with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next

- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges

Solution?

- A priority queue holding all unknown nodes, sorted by cost
- But must support `decreaseKey` operation
 - Must maintain a reference from each node to its current position in the priority queue
 - Conceptually simple, but can be a pain to code up
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a, "new cost - old cost")
 a.path = b
 }
 }
}
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a, “new cost – old cost”)
 a.path = b
 }
 }
}
Dense vs. sparse again

- First approach: $O(|V|^2)$

- Second approach: $O(|V|\log|V|+|E|\log|V|)$

- So which is better?
 - Sparse: $O(|V|\log|V|+|E|\log|V|)$ (if $|E| > |V|$, then $O(|E|\log|V|)$)
 - Dense: $O(|V|^2)$

- But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for “normal graphs”, we might call `decreaseKey` rarely (or not percolate far), making $|E|\log|V|$ more like $|E|$
Done with Dijkstra’s

• You will implement Dijkstra’s algorithm in homework 5 😊

• Onward..... Spanning trees!
Spanning Trees

• A simple problem: Given a connected undirected graph $G=(V,E)$, find a minimal subset of edges such that G is still connected
 – A graph $G_2=(V,E_2)$ such that G_2 is connected and removing any edge from E_2 makes G_2 disconnected
Observations

1. Any solution to this problem is a tree
 - Recall a tree does not need a root; just means acyclic
 - For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected
 - So $|E| \geq |V|-1$

4. A tree with $|V|$ nodes has $|V|-1$ edges
 - So every solution to the spanning tree problem has $|V|-1$ edges
Motivation

A spanning tree connects all the nodes with as few edges as possible

- Example: A “phone tree” so everybody gets the message and no unnecessary calls get made
 - Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and we want a tree of least total cost

- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem
 - Will do that next, after intuition from the simpler case
Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree

2. Iterate through edges; add to output any edge that does not create a cycle
Spanning tree via DFS

spanning_tree(Graph G) {
 for each node i
 i.marked = false
 for some node i: f(i)
}

f(Node i) {
 i.marked = true
 for each j adjacent to i:
 if(!j.marked) {
 add(i,j) to output
 f(j) // DFS
 }
}

Correctness: DFS reaches each node. We add one edge to connect it to the already visited nodes. Order affects result, not correctness.

Time: $O(|E|)$
Example

Stack
f(1)

Output:
Example

Stack
f(1)
f(2)

Output: (1,2)
Example

Stack
f(1)
f(2)
f(3)

Output: (1,2), (2,3)
Example

Stack
f(1)
f(2)
f(3)
f(4)

Output: (1,2), (2,3), (3,4)
Example

Stack
f(1)
f(2)
f(3)
f(4)
f(5)

Output: (1,2), (2,3), (3,4), (4,5)
Example

Stack
f(1)
f(2)
f(3)
f(4)
f(5)
f(6)

Output: (1,2), (2,3), (3,4), (4,5), (5,6)
Example

Stack
f(1)
f(2)
f(3)
f(4)
f(5)
f(6), f(7)

Output: (1,2), (2,3), (3,4), (4,5), (5,6), (5,7)
Example

Stack
f(1)
f(2)
f(3)
f(4)
f(5)
f(6), f(7)

Output: (1,2), (2,3), (3,4), (4,5), (5,6), (5,7)
Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):
- Goal is to build an acyclic connected graph
- When we add an edge, it adds a vertex to the tree
 - Else it would have created a cycle
- The graph is connected, so we reach all vertices

Efficiency:
- Depends on how quickly you can detect cycles
- Reconsider after the example
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output:
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6),
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Can stop once we have |V|-1 edges
Cycle Detection

• To decide if an edge could form a cycle is $O(|V|)$ because we may need to traverse all edges already in the output

• So overall algorithm would be $O(|V||E|)$

• But there is a faster way we know

• Use union-find!
 – Initially, each item is in its own 1-element set
 – Union sets when we add an edge that connects them
 – Stop when we have one set
Using Disjoint-Set

Can use a disjoint-set implementation in our spanning-tree algorithm to detect cycles:

Invariant: u and v are connected in output-so-far

iff

u and v in the same set

- Initially, each node is in its own set
- When processing edge (u,v):
 - If $\text{find}(u)$ equals $\text{find}(v)$, then do not add the edge
 - Else add the edge and $\text{union}(\text{find}(u), \text{find}(v))$
 - $O(|E|)$ operations that are almost $O(1)$ amortized
Summary So Far

The spanning-tree problem
- Add nodes to partial tree approach is $O(|E|)$
- Add acyclic edges approach is almost $O(|E|)$
 - Using union-find “as a black box”

But really want to solve the minimum-spanning-tree problem
- Given a weighted undirected graph, give a spanning tree of minimum weight
- Same two approaches will work with minor modifications
- Both will be $O(|E| \log |V|)$
Minimum Spanning Tree Algorithms

Algorithm #1

Shortest-path is to Dijkstra’s Algorithm as
Minimum Spanning Tree is to Prim’s Algorithm
(Both based on expanding cloud of known vertices, basically using a priority queue instead of a DFS stack)

Algorithm #2

Kruskal’s Algorithm for Minimum Spanning Tree is
Exactly our 2nd approach to spanning tree but process edges in cost order