Announcements

• Homework 4
 – Implementing hash tables and hash functions
 – Due Monday, August 3rd at 11pm
 – Allowed to work with a partner

• Catie Baker covering Friday class
Homework 4

• Read through the provided code files
• Implement DataCount[] getCountsArray(DataCounter counter) method of WordCount
 – use iterator of counter to get elements and put in a new array (which is returned)
• Implement compare(string, string) method of StringComparator
 – return 0 if the same, negative number if first argument comes alphabetically first
• Implement two implementations of DataCounter
 – HashTable_SC: hash table using separate chaining
 – HashTable_OA: hash table using open addressing
 – StringHasher: hash function for string
• Fill in code in Correlator.java to compare documents
• Test your solutions and turn in testing code
• README
 – do some timing, write another hash function
Graphs

• A graph is a formalism for representing relationships among items
 – Very general definition because very general concept

• A graph is a pair
 \[G = (V, E) \]
 – A set of \textit{vertices}, also known as \textit{nodes}
 \[V = \{v_1, v_2, \ldots, v_n\} \]
 – A set of \textit{edges}
 \[E = \{e_1, e_2, \ldots, e_m\} \]
 • Each edge \(e_i \) is a pair of vertices
 \((v_j, v_k) \)
 • An edge “connects” the vertices

• Graphs can be \textbf{directed} or \textbf{undirected}
Undirected Graphs

- In **undirected graphs**, edges have no specific direction
 - Edges are always “two-way”

- Thus, \((u, v) \in E\) implies \((v, u) \in E\)
 - Only one of these edges needs to be in the set
 - The other is implicit, so normalize how you check for it

- **Degree** of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices
Directed Graphs

• In directed graphs (sometimes called digraphs), edges have a direction.

• Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).
 • Let \((u, v) \in E\) mean \(u \rightarrow v\)
 • Call \(u\) the source and \(v\) the destination

• In-degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
• Out-degree of a vertex: number of out-bound edges i.e., edges where the vertex is the source
Self-Edges, Connectedness

- A **self-edge** a.k.a. a **loop** is an edge of the form \((u, u)\)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (often therefore implicit, but we will be explicit)

- A node can have a degree / in-degree / out-degree of **zero**

- A graph does not have to be **connected**
 - Even if every node has non-zero degree
More notation

For a graph $G = (V,E)$:

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum?
 - Maximum for undirected? $|V| \cdot |V+1|/2 \in \mathcal{O}(|V|^2)$
 - Maximum for directed? $|V|^2 \in \mathcal{O}(|V|^2)$
 (assuming self-edges allowed, else subtract $|V|$)
- If $(u,v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v,u) \in E$
Examples

Which would…
Use directed edges? Have self-edges? Be connected? Have 0-degree nodes?

1. Web pages with links
2. Facebook friends
3. Methods in a program that call each other
4. Road maps (e.g., Google maps)
5. Airline routes
6. Family trees
7. Course pre-requisites
Weighted Graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples use ints)
 - Some graphs allow negative weights; many do not
Examples

What, if anything, might weights represent for each of these?
Do negative weights make sense?

- Web pages with links
- Facebook friends
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
Paths and Cycles

- A **path** is a list of vertices \([v_0, v_1, \ldots, v_n]\) such that \((v_i, v_{i+1}) \in E\) for all \(0 \leq i < n\). Say "a path from \(v_0\) to \(v_n\)"

- A **cycle** is a path that begins and ends at the same node \((v_0 == v_n)\)

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]
Path Length and Cost

- **Path length**: Number of *edges* in a path
- **Path cost**: Sum of *weights* of edges in a path

Example where

\[P = [\text{Seattle}, \text{Salt Lake City}, \text{Chicago}, \text{Dallas}, \text{San Francisco}, \text{Seattle}] \]

\[
\begin{align*}
\text{length}(P) &= 5 \\
\text{cost}(P) &= 11.5
\end{align*}
\]
Simple Paths and Cycles

- A simple path repeats no vertices, except the first might be the last
 - [Seattle, Salt Lake City, San Francisco, Dallas]
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

- Recall, a cycle is a path that ends where it begins
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 - [Seattle, Salt Lake City, Seattle, Dallas, Seattle]

- A simple cycle is a cycle and a simple path
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D? No

Does the graph contain any cycles? No
Undirected-Graph Connectivity

• An undirected graph is connected if for all pairs of vertices \(u, v \), there exists a path from \(u \) to \(v \)

\[
\begin{array}{c}
\text{Connected graph} \\
\quad \\
\end{array}
\]

\[
\begin{array}{c}
\text{Disconnected graph} \\
\quad \\
\end{array}
\]

• An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices \(u, v \), there exists an edge from \(u \) to \(v \) plus self edges

\[
\begin{array}{c}
\quad \\
\end{array}
\]
Directed-Graph Connectivity

- A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.

- A directed graph is **weakly connected** if there is a path from every vertex to every other vertex *ignoring direction of edges*.

- A **complete** a.k.a. **fully connected** directed graph has an edge from every vertex to every other vertex *plus self edges*.
Trees as Graphs

When talking about graphs, we say a tree is a graph that is:
 – Undirected
 – Acyclic
 – Connected

So all trees are graphs, but not all graphs are trees
Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children

- Given a tree, picking a root gives a unique rooted tree
 - The tree is just drawn differently

![Redrawn tree](image-url)
Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children

- Given a tree, picking a root gives a unique rooted tree
 - The tree is just drawn differently

![Redrawn tree](image-url)
Directed Acyclic Graphs (DAGs)

- A **DAG** is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree

- Every DAG is a directed graph
- But not every directed graph is a DAG
Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites
Density / Sparsity

• Recall: In an undirected graph, $0 \leq |E| < |V|^2$
• Recall: In a directed graph: $0 \leq |E| \leq |V|^2$
• So for any graph, $O(|E|+|V|)$ is $O(|V|^2)$
• Another fact: If an undirected graph is connected, then $|V|-1 \leq |E|$
• Because $|E|$ is often much smaller than its maximum size, we do not always approximate $|E|$ as $O(|V|^2)$
 – This is a correct bound, it just is often not tight
 – If it is tight, i.e., $|E|$ is $\Theta(|V|^2)$ we say the graph is dense
 • More sloppily, dense means “lots of edges”
 – If $|E|$ is $O(|V|)$ we say the graph is sparse
 • More sloppily, sparse means “most possible edges missing”
What is the Data Structure?

• So graphs are really useful for lots of data and questions
 – For example, “what’s the lowest-cost path from x to y”

• But we need a data structure that represents graphs

• The “best one” can depend on:
 – Properties of the graph (e.g., dense versus sparse)
 – The common queries (e.g., “is \((u, v)\) an edge?” versus “what are the neighbors of node \(u\)?”)

• So we’ll discuss the two standard graph representations
 – Adjacency Matrix and Adjacency List
 – Different trade-offs, particularly time versus space
Adjacency Matrix

- Assign each node a number from 0 to $|V| - 1$
- A $|V| \times |V|$ matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then $M[u][v]$ being true means there is an edge from u to v
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- Space requirements:
 - $|V|^2$ bits

- Best for sparse or dense graphs?
 - Best for dense graphs
Adjacency Matrix Properties

• How will the adjacency matrix vary for an undirected graph?
 – Undirected will be symmetric around the diagonal

• How can we adapt the representation for weighted graphs?
 – Instead of a Boolean, store a number in each cell
 – Need some value to represent ‘not an edge’
 • In some situations, 0 or -1 works
Adjacency List

- Assign each node a number from 0 to $|V| - 1$
- An array of length $|V|$ in which each entry stores a list of all adjacent vertices (e.g., linked list)
Adjacency List Properties

- **Running time to:**
 - Get all of a vertex’s out-edges: $O(d)$ where d is out-degree of vertex
 - Get all of a vertex’s in-edges: $O(|V|+|E|)$ (but could keep a second adjacency list for this!)
 - Decide if some edge exists: $O(d)$ where d is out-degree of source
 - Insert an edge: $O(1)$ (unless you need to check if it’s there)
 - Delete an edge: $O(d)$ where d is out-degree of source

- **Space requirements:**
 - $O(|V|+|E|)$
 - Good for sparse graphs
Okay, we can represent graphs

Next lecture we’ll implement some useful and non-trivial algorithms

- **Topological sort**: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors

- **Shortest paths**: Find the shortest or lowest-cost path from x to y
 - Related: Determine if there even is such a path