CSE373: Data Structures & Algorithms
Lecture 13: Hash Collisions

Lauren Milne
Summer 2015
Announcements

• Homework 4 is out
 – find a partner using the discussion board if you would like
 – fill out catalyst survey if you have a partner
Hash Tables: Review

• Aim for constant-time (i.e., $O(1)$) find, insert, and delete
 – “On average” under some reasonable assumptions

• A hash table is an array of some fixed size
 – But grow-able as we’ll see

![Diagram of hash table flow]

client

E \rightarrow int \rightarrow table-index \rightarrow collision? \rightarrow collision resolution \rightarrow hash table

hash table

0

TableSize – 1
Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
 – Ideas?
Separate Chaining

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42

with mod hashing

and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10
Separate Chaining

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

- insert 10, 22, 107, 12, 42
- with mod hashing
- and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10
Thoughts on chaining

• Worst-case time for \texttt{find}?
 – Linear
 – But only with really bad luck or bad hash function
 – So not worth avoiding (e.g., with balanced trees at each bucket)

• Beyond asymptotic complexity, some “data-structure engineering” may be warranted
 – Linked list vs. array
 – Maybe leave room for 1 element in the table itself, to optimize constant factors for the common case
 • A time-space trade-off...
Time vs. space (constant factors only here)
More rigorous chaining analysis

Definition: The load factor, \(\lambda \), of a hash table is

\[
\lambda = \frac{N}{\text{TableSize}} \quad \text{← number of elements}
\]

Under chaining, the average number of elements per bucket is ___
More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \quad \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against ____ items
More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:
- Each unsuccessful \texttt{find} compares against λ items
- Each successful \texttt{find} compares against ______ items
More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}}$$

← number of elements

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against λ items
• Each successful find compares against $\lambda/2$ items

So we like to keep λ fairly low (e.g., 1 or 1.5 or 2) for chaining
Alternative: Use empty space in the table

- Another simple idea: If $h(\text{key})$ is already full,
 - try $(h(\text{key}) + 1) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 2) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 3) \mod \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10
Another simple idea: If $h(\text{key})$ is already full,

- try $(h(\text{key}) + 1) \% \text{TableSize}$. If full, round 0
- try $(h(\text{key}) + 2) \% \text{TableSize}$. If full, round 1
- try $(h(\text{key}) + 3) \% \text{TableSize}$. If full, round 2

Example: insert 38, 19, 8, 109, 10

<table>
<thead>
<tr>
<th>0</th>
<th>/</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/</td>
</tr>
<tr>
<td>2</td>
<td>/</td>
</tr>
<tr>
<td>3</td>
<td>/</td>
</tr>
<tr>
<td>4</td>
<td>/</td>
</tr>
<tr>
<td>5</td>
<td>/</td>
</tr>
<tr>
<td>6</td>
<td>/</td>
</tr>
<tr>
<td>7</td>
<td>/</td>
</tr>
<tr>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
</tr>
</tbody>
</table>
Alternative: Use empty space in the table

- Another simple idea: If \(h(\text{key}) \) is already full, try \((h(\text{key}) + 1) \mod \text{TableSize}\). If full, try \((h(\text{key}) + 2) \mod \text{TableSize}\). If full, try \((h(\text{key}) + 3) \mod \text{TableSize}\). If full...

- Example: insert 38, 19, 8, 109, 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>38</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
Alternative: Use empty space in the table

- Another simple idea: If $h(\text{key})$ is already full,
 - try $(h(\text{key}) + 1) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 2) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 3) \mod \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10
Alternative: Use empty space in the table

- Another simple idea: If $h(key)$ is already full, try $(h(key) + 1) \% \text{TableSize}$. If full, try $(h(key) + 2) \% \text{TableSize}$. If full, try $(h(key) + 3) \% \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10
Probing hash tables

Trying the next spot is called **probing** (also called **open addressing**)
 – We just did **linear probing**
 • i^{th} probe was $(h(key) + i) \mod \text{TableSize}$
 – In general have some **probe function** f and use
 $(h(key) + f(i)) \mod \text{TableSize}$

Open addressing does poorly with high load factor λ
 – Too many probes means no more $O(1)$
 – How can we fix this (how can we decrease the load factor)?
Other operations with open addressing

insert finds an open table position using a probe function

What about find?
- Must use same probe function to “retrace the trail” for the data
- Unsuccessful search when reach empty position

What about delete?
- Must use “lazy” deletion. Why?
 - Marker indicates “no data here, but don’t stop probing”
- Note: delete with chaining is plain-old list-remove
It turns out linear probing is a *bad idea*, even though the probe function is quick to compute (which is a good thing).

Tends to produce *clusters*, which lead to long probing sequences

- Called primary clustering
- Saw this starting in our example

[R. Sedgewick]
Analysis of Linear Probing

• Trivial fact: For any $\lambda < 1$, linear probing will find an empty slot
 – It is “safe” in this sense: no infinite loop unless table is full

• Non-trivial facts we won’t prove:
 Average # of probes given λ (in the limit as TableSize $\to \infty$)
 – Unsuccessful search:
 $$\frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)^2} \right)$$
 – Successful search:
 $$\frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right)$$

• This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)
In a chart

- Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes “large table” but point remains)

- By comparison, chaining performance is linear in λ and has no trouble with $\lambda > 1$
Quadratic probing

• We can avoid primary clustering by changing the probe function
 \[(h(key) + f(i)) \% \text{TableSize}\]

• A common technique is quadratic probing:
 \[f(i) = i^2\]

 - So probe sequence is:
 • 0\(^{th}\) probe: \(h(key) \% \text{TableSize}\)
 • 1\(^{st}\) probe: \((h(key) + 1) \% \text{TableSize}\)
 • 2\(^{nd}\) probe: \((h(key) + 4) \% \text{TableSize}\)
 • 3\(^{rd}\) probe: \((h(key) + 9) \% \text{TableSize}\)
 • …
 • \(i^{th}\) probe: \((h(key) + i^2) \% \text{TableSize}\)

• Intuition: Probes quickly “leave the neighborhood”
Quadratic Probing Example

Table Size = 10
Insert:
89
18
49
58
79

\[i^{th \text{ probe}}: (h(key) + i^2) \mod \text{TableSize} \]
Quadratic Probing Example

TableSize = 10
Insert:
89
18
49
58
79

\[i^{th}\text{ probe}: (h(\text{key}) + i^2) \mod \text{TableSize} \]
Quadratic Probing Example

TableSize = 10
Insert:
89
18
49
58
79

\[i^{th \text{ probe}}: (h(key) + i^2) \mod \text{TableSize} \]
Quadratic Probing Example

Table Size = 10
Insert:
89
18
49
58
79

\(i^{th} \) probe: \((h(\text{key}) + i^2) \mod \text{Table Size}\)
Quadratic Probing Example

Table Size = 10

Insert:
- 89
- 18
- 49
- 58
- 79

- ith probe: \((h(key) + i^2) \mod \text{TableSize}\)

<table>
<thead>
<tr>
<th>0</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
</tr>
</tbody>
</table>
Quadratic Probing Example

TableSize=10
Insert:
89
18
49
58
79

\[i^{\text{th}} \text{ probe: } (h(key) + i^2) \mod \text{TableSize} \]
Quadratic Probing Example

TableSize = 10
Insert:
89
18
49
58
79

\[\text{i}^{th} \text{ probe: } (h(\text{key}) + i^2) \mod \text{TableSize} \]
Quadratic Probing Example

TableSize = 10
Insert:
89
18
49
58
79

\[i^{th} \text{ probe: } (h(\text{key}) + i^2) \mod \text{TableSize} \]
Another Quadratic Probing Example

TableSize = 7

Insert:
76 \((76 \mod 7 = 6) \)
40 \((40 \mod 7 = 5) \)
48 \((48 \mod 7 = 6) \)
5 \((5 \mod 7 = 5) \)
55 \((55 \mod 7 = 6) \)
47 \((47 \mod 7 = 5) \)

\[i^{th} \text{ probe: } (h(key) + i^2) \mod \text{TableSize} \]
Another Quadratic Probing Example

TableSize = 7

Insert:
- 76 (76 % 7 = 6)
- 40 (40 % 7 = 5)
- 48 (48 % 7 = 6)
- 5 (5 % 7 = 5)
- 55 (55 % 7 = 6)
- 47 (47 % 7 = 5)

i^{th} probe: (h(key) + i^2) \mod \text{TableSize}
Another Quadratic Probing Example

TableSize = 7

Insert:
- 76 \((76 \mod 7 = 6) \)
- 40 \((40 \mod 7 = 5) \)
- 48 \((48 \mod 7 = 6) \)
- 5 \((5 \mod 7 = 5) \)
- 55 \((55 \mod 7 = 6) \)
- 47 \((47 \mod 7 = 5) \)

i^{th} \text{ probe: } (h(\text{key}) + i^2) \mod \text{TableSize}
Another Quadratic Probing Example

TableSize = 7

Insert:

<table>
<thead>
<tr>
<th>i</th>
<th>key</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
</tr>
</tbody>
</table>

\[\text{i}^{\text{th}} \text{ probe: } (h(\text{key}) + i^2) \mod \text{TableSize} \]
Another Quadratic Probing Example

TableSize = 7

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Insert:

76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
 5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

\[i^{th} \text{ probe: } (h(\text{key}) + i^2) \% \text{ TableSize} \]
Another Quadratic Probing Example

TableSize = 7

Insert:

<table>
<thead>
<tr>
<th>Key</th>
<th>Hash Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>(76 % 7 = 6)</td>
</tr>
<tr>
<td>40</td>
<td>(40 % 7 = 5)</td>
</tr>
<tr>
<td>48</td>
<td>(48 % 7 = 6)</td>
</tr>
<tr>
<td>5</td>
<td>(5 % 7 = 5)</td>
</tr>
<tr>
<td>55</td>
<td>(55 % 7 = 6)</td>
</tr>
<tr>
<td>47</td>
<td>(47 % 7 = 5)</td>
</tr>
</tbody>
</table>

\[\text{ith probe: } (h(\text{key}) + i^2) \mod \text{TableSize} \]
Another Quadratic Probing Example

Table Size $= 7$

<table>
<thead>
<tr>
<th>Insert</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>$(76 \mod 7 = 6)$</td>
</tr>
<tr>
<td>40</td>
<td>$(40 \mod 7 = 5)$</td>
</tr>
<tr>
<td>48</td>
<td>$(48 \mod 7 = 6)$</td>
</tr>
<tr>
<td>5</td>
<td>$(5 \mod 7 = 5)$</td>
</tr>
<tr>
<td>55</td>
<td>$(55 \mod 7 = 6)$</td>
</tr>
<tr>
<td>47</td>
<td>$(47 \mod 7 = 5)$</td>
</tr>
</tbody>
</table>

Yikes!: For all n, $(n^2 + 5) \mod 7$ is 0, 2, 5, or 6

- Excel shows takes “at least” 50 probes and a pattern
- Turns out 47 is never placed in the table
From Bad News to Good News

• Bad news:
 – Quadratic probing can cycle through the same full indices, never terminating despite table not being full

• Good news:
 – If TableSize is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in at most $\frac{\text{TableSize}}{2}$ probes
 – So: If you keep $\lambda < \frac{1}{2}$ and TableSize is prime, no need to detect cycles
 – Proof is posted in lecture13.txt
 • Also, slightly less detailed proof in textbook
 • Key fact: For prime T and $0 < i, j < T/2$ where $i \neq j$,
 $(k + i^2) \% T \neq (k + j^2) \% T$ (i.e., no index repeat)
Clustering reconsidered

• Quadratic probing does not suffer from primary clustering: no problem with keys initially hashing to the same neighborhood

• But it’s no help if keys initially hash to the same index
 – Called secondary clustering

• Can avoid secondary clustering with a probe function that depends on the key: double hashing…
Double hashing

Idea:
- Given two good hash functions \(h \) and \(g \), it is very unlikely that for some key, \(h(\text{key}) == g(\text{key}) \)
- So make the probe function \(f(i) = i \times g(\text{key}) \)

Probe sequence:
- 0\(^{th}\) probe: \(h(\text{key}) \mod \text{TableSize} \)
- 1\(^{st}\) probe: \((h(\text{key}) + g(\text{key})) \mod \text{TableSize} \)
- 2\(^{nd}\) probe: \((h(\text{key}) + 2 \times g(\text{key})) \mod \text{TableSize} \)
- 3\(^{rd}\) probe: \((h(\text{key}) + 3 \times g(\text{key})) \mod \text{TableSize} \)
- ...
- \(i^{th}\) probe: \((h(\text{key}) + i \times g(\text{key})) \mod \text{TableSize} \)

Detail: Make sure \(g(\text{key}) \) cannot be 0
Double-hashing analysis

• Intuition: Because each probe is “jumping” by \(g(key) \) each time, we “leave the neighborhood” and “go different places from other initial collisions”

• But we could still have a problem like in quadratic probing where we are not “safe” (infinite loop despite room in table)
 – It is known that this cannot happen in at least one case:
 • \(h(key) = key \mod p \)
 • \(g(key) = q - (key \mod q) \)
 • \(2 < q < p \)
 • \(p \) and \(q \) are prime
More double-hashing facts

• Assume “uniform hashing”
 – Means probability of \(g(\text{key1}) \mod p = g(\text{key2}) \mod p \) is \(1/p \)

• Non-trivial facts we won’t prove:
 Average # of probes given \(\lambda \) (in the limit as \(\text{TableSize} \to \infty \))
 – Unsuccessful search (intuitive):
 \[
 \frac{1}{1-\lambda}
 \]
 – Successful search (less intuitive):
 \[
 \frac{1}{\lambda} \log_e \left(\frac{1}{1-\lambda} \right)
 \]

• Bottom line: unsuccessful bad (but not as bad as linear probing), but successful is not nearly as bad
Rehashing

• As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything

• With chaining, we get to decide what “too full” means
 – Keep load factor reasonable (e.g., < 1)?

• For probing, half-full is a good rule of thumb

• New table size
 – Twice-as-big is a good idea, except that won’t be prime!
 – So go *about* twice-as-big
 – Can have a list of prime numbers in your code since you won’t grow more than 20-30 times
Hashtable Scenarios

For each of the scenarios, answer the following questions:

- Is a hashtable the best-suited data structure?
- If so, what would be used for the keys? Values?
- If not, what data structure would be best-suited?
- What other assumptions are you making about the scenario?

- Catalog of items (product id, name, price)
- Bookmarks in a web browser (favicon, URL, bookmark name)
- IT support requests (timestamp, ticket id, description)
- Character frequency analysis (character, # of appearances)
- Spell-checking (all or most words in a language)
Homework 4

- Read through the provided code files
- Implement `DataCount[] getCountsArray(DataCounter counter)` method of `WordCount`
 - use iterator of counter to get elements and put in a new array (which is returned)
- Implement `compare(string, string)` method of `StringComparator`
 - return 0 if the same, negative number if first argument comes alphabetically first
- Implement two implementations of `DataCounter`
 - `HashTable_SC`: hash table using separate chaining
 - `HashTable_OA`: hash table using open addressing
 - `StringHasher`: hash function for string
- Fill in code in `Correlator.java` to compare documents
- Test your solutions and turn in testing code
- README
 - do some timing, write another hash function