CSE373: Data Structures & Algorithms
Lecture 8: AVL Trees and Priority Queues

Catie Baker
Spring 2015
Announcements

• Homework 2 due NOW (a few minutes ago!!!)
• Homework 3 out today (due April 29th) 😊

• Today
 – Finish AVL Trees
 – Start Priority Queues
The **AVL Tree Data Structure**

An AVL tree is a **self-balancing** binary search tree.

Structural properties

1. **Binary tree** property (same as BST)
2. **Order** property (same as for BST)
3. **Balance property:**
 - balance of every node is between -1 and 1

Need to keep track of height of every node and maintain balance as we perform operations.
AVL Trees: Insert

• Insert as in a BST (add a leaf in appropriate position)

• Check back up path for imbalance, which will be 1 of 4 cases:
 – Unbalanced node’s left-left grandchild is too tall
 – Unbalanced node’s left-right grandchild is too tall
 – Unbalanced node’s right-left grandchild is too tall
 – Unbalanced node’s right-right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-unbalanced subtree has the same height as before the insertion
 – So all ancestors are now balanced
AVL Trees: Single rotation

- **Single rotation:**
 - The basic operation we’ll use to rebalance an AVL Tree
 - Move child of unbalanced node into parent position
 - Parent becomes the “other” child (always okay in a BST!)
 - Other sub-trees move in only way BST allows
The general left-left case

- Insertion into left-left grandchild causes an imbalance at node a
 - Move child of unbalanced node into parent position
 - Parent becomes the “other” child
 - Other sub-trees move in the only way BST allows:
 - using BST facts: $X < b < Y < a < Z$

- A single rotation restores balance at the node
 - To same height as before insertion, so ancestors now balanced
The general right-right case

- Mirror image to left-left case, so you rotate the other way
 - Exact same concept, but need different code
Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree.

Simple example: \texttt{insert(1), insert(6), insert(3)}

- First wrong idea: single rotation like we did for left-left.
Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)
 - Second wrong idea: single rotation on the child of the unbalanced node

Still unbalanced!
Sometimes two wrongs make a right 😊

- First idea violated the order property
- Second idea didn’t fix balance
- But if we do both single rotations, starting with the second, it works! (And not just for this example.)
- **Double rotation:**
 1. Rotate problematic child and grandchild
 2. Then rotate between self and new child
The general right-left case
Comments

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert
 - So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:

 - Easier to remember than you may think:
 Move c to grandparent’s position
 Put a, b, X, U, V, and Z in the only legal positions for a BST
The last case: left-right

- Mirror image of right-left
 - Again, no new concepts, only new code to write
AVL Trees: efficiency

- Worst-case complexity of `find`: $O(\log n)$
 - Tree is balanced

- Worst-case complexity of `insert`: $O(\log n)$
 - Tree starts balanced
 - A rotation is $O(1)$ and there’s an $O(\log n)$ path to root
 - Tree ends balanced

- Worst-case complexity of `buildTree`: $O(n \log n)$

Takes some more rotation action to handle `delete`...
Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are *always* balanced
2. Height balancing adds no more than a constant factor to the speed of *insert* and *delete*

Arguments against AVL trees:

1. Difficult to program & debug [but done once in a library!]
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. If *amortized* (later, I promise) logarithmic time is enough, use splay trees (in the text)
Done with AVL Trees (….phew!)

next up…

Priority Queues ADT
(Homework 3 😊)
A new ADT: Priority Queue

- A **priority queue** holds *compare-able data*
 - Like dictionaries, we need to *compare items*
 - Given x and y, is x less than, equal to, or greater than y
 - Meaning of the ordering can depend on your data
 - Integers are comparable, so will use them in examples
 - But the priority queue ADT is much more general
 - Typically two fields, the *priority* and the *data*
Priorities

- Each item has a “priority”
 - In our examples, the lesser item is the one with the greater priority
 - So “priority 1” is more important than “priority 4”
 - (Just a convention, think “first is best”)

- Operations:
 - insert
 - deleteMin
 - is_empty

- Key property: deleteMin returns and deletes the item with greatest priority (lowest priority value)
 - Can resolve ties arbitrarily
Example

insert x_1 with priority 5
insert x_2 with priority 3
insert x_3 with priority 4
$a = \text{deleteMin} \ // x_2$
$b = \text{deleteMin} \ // x_3$
insert x_4 with priority 2
insert x_5 with priority 6
$c = \text{deleteMin} \ // x_4$
$d = \text{deleteMin} \ // x_1$

- Analogy: insert is like enqueue, deleteMin is like dequeue
 - But the whole point is to use priorities instead of FIFO
Applications

Like all good ADTs, the priority queue arises often
 – Sometimes blatant, sometimes less obvious

• Run multiple programs in the operating system
 – “critical” before “interactive” before “compute-intensive”
 – Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)
• Select print jobs in order of decreasing length?
• Forward network packets in order of urgency
• Select most frequent symbols for data compression
• Sort (first \texttt{insert} all, then repeatedly \texttt{deleteMin})
 – Much like Homework 1 uses a stack to implement reverse
Finding a good data structure

- Will show an efficient, non-obvious data structure for this ADT
 - But first let’s analyze some “obvious” ideas for n data items
 - All times worst-case; assume arrays “have room”

<table>
<thead>
<tr>
<th>data</th>
<th>insert algorithm / time</th>
<th>deleteMin algorithm / time</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted array</td>
<td>add at end $O(1)$</td>
<td>search $O(n)$</td>
</tr>
<tr>
<td>unsorted linked list</td>
<td>add at front $O(1)$</td>
<td>search $O(n)$</td>
</tr>
<tr>
<td>sorted circular array</td>
<td>search / shift $O(n)$</td>
<td>move front $O(1)$</td>
</tr>
<tr>
<td>sorted linked list</td>
<td>put in right place $O(n)$</td>
<td>remove at front $O(1)$</td>
</tr>
<tr>
<td>binary search tree</td>
<td>put in right place $O(n)$</td>
<td>leftmost $O(n)$</td>
</tr>
<tr>
<td>AVL tree</td>
<td>put in right place $O(\log n)$</td>
<td>leftmost $O(\log n)$</td>
</tr>
</tbody>
</table>
More on possibilities

- One more idea: if priorities are 0, 1, …, k can use an array of k lists
 - `insert`: add to front of list at `arr[priority]`, $O(1)$
 - `deleteMin`: remove from lowest non-empty list $O(k)$

- We are about to see a data structure called a “binary heap”
 - Another binary tree structure with specific properties
 - $O(\log n)$ `insert` and $O(\log n)$ `deleteMin` worst-case
 - Possible because we don’t support unneeded operations; no need to maintain a full sort
 - *Very* good constant factors
 - *If* items arrive in random order, then `insert` is $O(1)$ on average
 - Because 75% of nodes in bottom two rows
Our data structure

A binary min-heap (or just binary heap or just heap) has:

- **Structure property**: A complete binary tree
- **Heap property**: The priority of every (non-root) node is less important than the priority of its parent
 - *Not a binary search tree*

So:

- Where is the highest-priority item?
- What is the height of a heap with \(n \) items?
Operations: basic idea

- **findMin**: return root.data
- **deleteMin**:
 1. answer = root.data
 2. Move right-most node in last row to root to restore structure property
 3. “Percolate down” to restore heap property
- **insert**:
 1. Put new node in next position on bottom row to restore structure property
 2. “Percolate up” to restore heap property

Overall strategy:
- Preserve structure property
- Break and restore heap property
DeleteMin

Delete (and later return) value at root node
DeleteMin: Keep the Structure Property

• We now have a “hole” at the root
 – Need to fill the hole with another value

• Keep structure property: When we are done, the tree will have one less node and must still be complete

• Pick the last node on the bottom row of the tree and move it to the “hole”
DeleteMin: Restore the Heap Property

Percolate down:
- Keep comparing priority of item with both children
- If priority is less important, swap with the most important child and go down one level
- Done if both children are less important than the item or we’ve reached a leaf node

Why is this correct? What is the run time?
DeleteMin: Run Time Analysis

- Run time is $O(\text{height of heap})$

- A heap is a complete binary tree

- Height of a complete binary tree of n nodes?
 - height $= \lceil \log_2(n) \rceil$

- Run time of `deleteMin` is $O(\log n)$
Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct
Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property
Insert: Restore the heap property

Percolate up:
- Put new data in new location
- If parent is less important, swap with parent, and continue
- Done if parent is more important than item or reached root

What is the running time?
Like deleteMin, worst-case time proportional to tree height: $O(\log n)$
Summary

- **Priority Queue ADT:**
 - `insert` comparable object,
 - `deleteMin`

- **Binary heap data structure:**
 - Complete binary tree
 - Each node has less important priority value than its parent

- `insert` and `deleteMin` operations $= O($height-of-tree$) = O(\log n)$
 - `insert`: put at new last position in tree and percolate-up
 - `deleteMin`: remove root, put last element at root and percolate-down