Announcements

• Homework 4 due tonight at 11pm!!

• Homework 5 out tonight
 – Due May 27th
 – As with HW4 you’re allowed to work with a partner
Dijkstra’s algorithm

- Dijkstra’s algorithm: Compute shortest paths in a weighted graph with no negative weights

Initially, start node has cost 0 and all other nodes have cost ∞

At each step:
- Pick an unknown vertex v with the lowest “cost”
- Add it to the “cloud” of known vertices
- Update distances for nodes with edges from v
Correctness and Efficiency

• What should we do after learning an algorithm?
 – Prove it is correct
 • Not obvious!
 • We will sketch the key ideas
 – Analyze its efficiency
 • Will do better by using a data structure we learned earlier!
Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path
 – True initially: shortest path to start node has cost 0
 – If it stays true every time we mark a node “known”, then by induction this holds and eventually everything is “known”

Key fact we need: *When we mark a vertex “known” we won’t discover a shorter path later!*
 – This holds *only* because Dijkstra’s algorithm picks the node with the next shortest path-so-far
 – The proof is by contradiction…
Correctness: The Cloud (Rough Sketch)

Suppose \(v \) is the next node to be marked known (“added to the cloud”)

- The best-known path to \(v \) must have only nodes “in the cloud”
 - Else we would have picked a node closer to the cloud than \(v \)
- Suppose the actual shortest path to \(v \) is different
 - It won’t use only cloud nodes, or we would know about it
 - So it must use non-cloud nodes.
 - Let \(w \) be the first non-cloud node on this path.
 - The part of the path up to \(w \) is already known and must be shorter than the best-known path to \(v \). So \(v \) would not have been picked.
 - Contradiction.
Efficiency, first approach

Use pseudocode to determine asymptotic run-time
 – Notice each edge is processed only once

Dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.path = b
 }
 }
}
Efficiency, first approach

Use pseudocode to determine asymptotic run-time
- Notice each edge is processed only once

```pseudocode
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```

\[O(|V|)\]
\[O(|V|^2)\]
\[O(|E|)\]
\[O(|V|^2)\]
Improving asymptotic running time

- So far: $O(|V|^2)$

- We had a similar “problem” with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges

- Solution?
 - A priority queue holding all unknown nodes, sorted by cost
 - But must support \texttt{decreaseKey} operation
 - Must maintain a reference from each node to its current position in the priority queue
 - Conceptually simple, but can be a pain to code up
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a, “new cost - old cost”)
 a.path = b
 }
 }
}
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a,"new cost - old cost")
 a.path = b
 }
 }
}
Dense vs. sparse again

- First approach: $O(|V|^2)$
- Second approach: $O(|V|\log|V|+|E|\log|V|)$
- So which is better?
 - Sparse: $O(|V|\log|V|+|E|\log|V|)$ (if $|E| > |V|$, then $O(|E|\log|V|)$)
 - Dense: $O(|V|^2)$
- But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for “normal graphs”, we might call \texttt{decreaseKey} rarely (or not percolate far), making $|E|\log|V|$ more like $|E|$
Done with Dijkstra’s

• You will implement Dijkstra’s algorithm in homework 5 😊

• Onward….. Spanning trees!
Spanning Trees

- A simple problem: Given a connected undirected graph $G=(V,E)$, find a minimal subset of edges such that G is still connected
 - A graph $G_2=(V,E_2)$ such that G_2 is connected and removing any edge from E_2 makes G_2 disconnected
Observations

1. Any solution to this problem is a tree
 - Recall a tree does not need a root; just means acyclic
 - For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected
 - So $|E| \geq |V|-1$

4. A tree with $|V|$ nodes has $|V|-1$ edges
 - So every solution to the spanning tree problem has $|V|-1$ edges
Motivation

A spanning tree connects all the nodes with as few edges as possible

- Example: A “phone tree” so everybody gets the message and no unnecessary calls get made

In most compelling uses, we have a weighted undirected graph and we want a tree of least total cost

- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem
 - Will do that next, after intuition from the simpler case
Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree

2. Iterate through edges; add to output any edge that does not create a cycle
Spanning tree via DFS

```python
class Node:
    def __init__(self, name):
        self.name = name
        self.marked = False

def spanning_tree(Graph G):
    for each node i:
        i.marked = False
    for some node i: f(i)

def f(Node i):
    i.marked = True
    for each j adjacent to i:
        if(!j.marked) {
            add(i,j) to output
            f(j) // DFS
        }
```

Correctness: DFS reaches each node. We add one edge to connect it to the already visited nodes. Order affects result, not correctness.

Time: $O(|E|)$
Example

Stack

\[f(1) \]

Output:
Example

Stack
f(1)
f(2)

Output: (1,2)
Example

Stack
f(1)
f(2)
f(7)

Output: (1,2), (2,7)
Example

Stack
f(1)
f(2)
f(7)
f(5)

Output: (1,2), (2,7), (7,5)
Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)

Output: (1,2), (2,7), (7,5), (5,4)
Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
f(3)

Output: (1,2), (2,7), (7,5), (5,4), (4,3)
Example

Stack

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)
Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4) f(6)
f(3)

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)
Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):
- Goal is to build an acyclic connected graph
- When we add an edge, it adds a vertex to the tree
 - Else it would have created a cycle
- The graph is connected, so we reach all vertices

Efficiency:
- Depends on how quickly you can detect cycles
- Reconsider after the example
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output:
Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2)
Example

Edges in some arbitrary order:
 \((1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)\)

Output: \((1,2), (3,4)\)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6),
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Can stop once we have |V|-1 edges
Cycle Detection

• To decide if an edge could form a cycle is $O(|V|)$ because we may need to traverse all edges already in the output

• So overall algorithm would be $O(|V||E|)$

• But there is a faster way we know

• Use union-find!
 – Initially, each item is in its own 1-element set
 – Union sets when we add an edge that connects them
 – Stop when we have one set
Using Disjoint-Set

Can use a disjoint-set implementation in our spanning-tree algorithm to detect cycles:

Invariant: \(u \) and \(v \) are connected in output-so-far iff
\[u \text{ and } v \text{ in the same set} \]

- Initially, each node is in its own set
- When processing edge \((u, v)\):
 - If \(\text{find}(u) \) equals \(\text{find}(v) \), then do not add the edge
 - Else add the edge and \(\text{union}(\text{find}(u), \text{find}(v)) \)
 - \(O(|E|) \) operations that are almost \(O(1) \) amortized
Summary So Far

The spanning-tree problem
 – Add nodes to partial tree approach is $O(|E|)$
 – Add acyclic edges approach is almost $O(|E|)$
 • Using union-find “as a black box”

But really want to solve the minimum-spanning-tree problem
 – Given a weighted undirected graph, give a spanning tree of minimum weight
 – Same two approaches will work with minor modifications
 – Both will be $O(|E| \log |V|)$
Minimum Spanning Tree Algorithms

Algorithm #1

Shortest-path is to Dijkstra’s Algorithm as
Minimum Spanning Tree is to Prim’s Algorithm
(Both based on expanding cloud of known vertices, basically using a priority queue instead of a DFS stack)

Algorithm #2

Kruskal’s Algorithm for Minimum Spanning Tree is
Exactly our 2nd approach to spanning tree but process edges in cost order