Announcements

• Homework 4 is out
 – Implementing hash tables and hash functions
 – Due Wednesday May 13th at 11pm
 – Allowed to work with a partner

• Midterm next Wednesday in-class
Midterm, in-class Wednesday May 6th

• In class, closed notes, closed book.

• Covers everything up to and including hashing.
 – Stacks, queues
 – Induction
 – Asymptotic analysis and Big-Oh
 – Dictionaries, BSTs, AVL Trees
 – Binary heaps and Priority Queues
 – Disjoint sets and Union-Find
 – Hash Tables and Collisions

• Information, sample past exams and solutions posted online.
Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept

- A graph is a pair
 \[G = (V, E) \]
 - A set of vertices, also known as nodes
 \[V = \{v_1, v_2, \ldots, v_n\} \]
 - A set of edges
 \[E = \{e_1, e_2, \ldots, e_m\} \]
 - Each edge \(e_i \) is a pair of vertices
 \((v_j, v_k) \)
 - An edge “connects” the vertices

- Graphs can be directed or undirected

![Graph Example](image-url)
Undirected Graphs

• In undirected graphs, edges have no specific direction
 – Edges are always “two-way”

• Thus, \((u,v) \in E\) implies \((v,u) \in E\)
 – Only one of these edges needs to be in the set
 – The other is implicit, so normalize how you check for it

• Degree of a vertex: number of edges containing that vertex
 – Put another way: the number of adjacent vertices
Directed Graphs

- In directed graphs (sometimes called digraphs), edges have a direction.

Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).
- Let \((u, v) \in E\) mean \(u \rightarrow v\)
- Call \(u\) the source and \(v\) the destination

- In-degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination.
- Out-degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source.
Self-Edges, Connectedness

• A self-edge a.k.a. a loop is an edge of the form \((u, u)\)
 – Depending on the use/algorithym, a graph may have:
 • No self edges
 • Some self edges
 • All self edges (often therefore implicit, but we will be explicit)

• A node can have a degree / in-degree / out-degree of zero

• A graph does not have to be connected
 – Even if every node has non-zero degree
More notation

For a graph $G = (V,E)$:

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum? 0
 - Maximum for undirected? $|V| \cdot |V+1| / 2 \in O(|V|^2)$
 - Maximum for directed? $|V|^2 \in O(|V|^2)$
 (assuming self-edges allowed, else subtract $|V|$)

- If $(u,v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v,u) \in E$
Examples

Which would use directed edges? Which would have self-edges? Which would be connected? Which could have 0-degree nodes?

1. Web pages with links
2. Facebook friends
3. Methods in a program that call each other
4. Road maps (e.g., Google maps)
5. Airline routes
6. Family trees
7. Course pre-requisites
Weighted Graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples use ints)
 - Orthogonal to whether graph is directed
 - Some graphs allow negative weights; many do not

```
Clinton   20   Mukilteo
          |
|   30    |
|        |
Kingston  ----> Edmonds
          |
|        |
Bainbridge  35  Seattle
          |
| 60       |
|          |
Bremerton
```

Spring 2015 CSE373: Data Structures & Algorithms
Examples

What, if anything, might weights represent for each of these?
Do negative weights make sense?

- Web pages with links
- Facebook friends
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
Paths and Cycles

- A path is a list of vertices $[v_0, v_1, \ldots, v_n]$ such that $(v_i, v_{i+1}) \in E$ for all $0 \leq i < n$. Say “a path from v_0 to v_n”

- A cycle is a path that begins and ends at the same node ($v_0 = v_n$)

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]
Path Length and Cost

- **Path length**: Number of *edges* in a path
- **Path cost**: Sum of *weights* of edges in a path

Example where
P = [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

length(P) = 5
\[\text{cost}(P) = 11.5 \]
Simple Paths and Cycles

- A **simple path** repeats no vertices, except the first might be the last
 - [Seattle, Salt Lake City, San Francisco, Dallas]
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

- Recall, a **cycle** is a path that ends where it begins
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 - [Seattle, Salt Lake City, Seattle, Dallas, Seattle]

- A **simple cycle** is a cycle and a simple path
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D? **No**

Does the graph contain any cycles? **No**
Undirected-Graph Connectivity

• An undirected graph is connected if for all pairs of vertices u, v, there exists a path from u to v.

![Connected graph](image1)

![Disconnected graph](image2)

• An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices u, v, there exists an edge from u to v.

![complete graph](image3)
Directed-Graph Connectivity

- A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.

- A directed graph is **weakly connected** if there is a path from every vertex to every other vertex ignoring direction of edges.

- A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex, plus self edges.
Trees as Graphs

When talking about graphs, we say a tree is a graph that is:

- Undirected
- Acyclic
- Connected

So all trees are graphs, but not all graphs are trees.
Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children

- Given a tree, picking a root gives a unique rooted tree
 - The tree is just drawn differently
Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children

- Given a tree, picking a root gives a unique rooted tree
 - The tree is just drawn differently

![Diagram](image-url)
Directed Acyclic Graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree

- Every DAG is a directed graph
 - But not every directed graph is a DAG
Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites
Density / Sparsity

• Recall: In an undirected graph, \(0 \leq |E| < |V|^2\)
• Recall: In a directed graph: \(0 \leq |E| \leq |V|^2\)
• So for any graph, \(O(|E|+|V|^2)\) is \(O(|V|^2)\)
• Another fact: If an undirected graph is connected, then \(|V|-1 \leq |E|\)
• Because \(|E|\) is often much smaller than its maximum size, we do not always approximate \(|E|\) as \(O(|V|^2)\)
 – This is a correct bound, it just is often not tight
 – If it is tight, i.e., \(|E|\) is \(\Theta(|V|^2)\) we say the graph is dense
 • More sloppily, dense means “lots of edges”
 – If \(|E|\) is \(O(|V|)\) we say the graph is sparse
 • More sloppily, sparse means “most possible edges missing”
What is the Data Structure?

• So graphs are really useful for lots of data and questions
 – For example, “what’s the lowest-cost path from x to y”

• But we need a data structure that represents graphs

• The “best one” can depend on:
 – Properties of the graph (e.g., dense versus sparse)
 – The common queries (e.g., “is \((u, v)\) an edge?” versus “what are the neighbors of node \(u\)?”)

• So we’ll discuss the two standard graph representations
 – Adjacency Matrix and Adjacency List
 – Different trade-offs, particularly time versus space
Adjacency Matrix

- Assign each node a number from 0 to $|V| - 1$
- A $|V| \times |V|$ matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then $M[u][v]$ being true means there is an edge from u to v

```
A(0) -- D(3) --> B(1) -- C(2)
```

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
```
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- Space requirements:
 - $|V|^2$ bits

- Best for sparse or dense graphs?
 - Best for dense graphs
Adjacency Matrix Properties

• How will the adjacency matrix vary for an undirected graph?
 – Undirected will be symmetric around the diagonal

• How can we adapt the representation for weighted graphs?
 – Instead of a Boolean, store a number in each cell
 – Need some value to represent ‘not an edge’
 • In some situations, 0 or -1 works
Adjacency List

- Assign each node a number from 0 to $|V| - 1$
- An array of length $|V|$ in which each entry stores a list of all adjacent vertices (e.g., linked list)
Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges: $O(d)$ where d is out-degree of vertex
 - Get all of a vertex’s in-edges: $O(|E|)$ (but could keep a second adjacency list for this!)
 - Decide if some edge exists: $O(d)$ where d is out-degree of source
 - Insert an edge: $O(1)$ (unless you need to check if it’s there)
 - Delete an edge: $O(d)$ where d is out-degree of source

- Space requirements:
 - $O(|V|+|E|)$
 - Good for sparse graphs
Next…

Okay, we can represent graphs

Next lecture we’ll implement some useful and non-trivial algorithms

• **Topological sort**: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors

• **Shortest paths**: Find the shortest or lowest-cost path from x to y
 – Related: Determine if there even is such a path