CSE373: Data Structures & Algorithms
Lecture 12: Amortized Analysis and Memory Locality

Lauren Milne
Spring 2015
Announcements

• Homework 3 due on Wednesday at 11pm

• Catie back Monday
Amortized Analysis

• In amortized analysis, the time required to perform a sequence of data structure operations is averaged over all the operations performed.

• Typically used to show that the average cost of an operation is small for a sequence of operations, even though a single operation can cost a lot
Amortized Analysis

- Recall our plain-old stack implemented as an array that doubles its size if it runs out of room
 - Can we claim **push** is $O(1)$ time if resizing is $O(n)$ time?
 - *We can’t*, but we *can* claim it’s an $O(1)$ **amortized operation**
Amortized Complexity

We get an upperbound $T(n)$ on the total time of a sequence of n operations. The average time per operation is then $T(n)/n$, which is also the amortized time per operation.

If a sequence of n operations takes $O(n f(n))$ time, we say the amortized runtime is $O(f(n))$

- If n operations take $O(n)$, what is amortized time per operation?
 - $O(1)$ per operation
- If n operations take $O(n^3)$, what is amortized time per operation?
 - $O(n^2)$ per operation

The worst case time for an operation can be larger than $f(n)$, but amortized guarantee ensures the average time per operation for any sequence is $O(f(n))$
“Building Up Credit”

• Can think of preceding “cheap” operations as building up “credit” that can be used to “pay for” later “expensive” operations

• Because any sequence of operations must be under the bound, enough “cheap” operations must come first
 – Else a prefix of the sequence would violate the bound
Example #1: Resizing stack

A stack implemented with an array where we double the size of the array if it becomes full

Claim: Any sequence of push/pop/isEmpty is amortized $O(1)$ per operation

Need to show any sequence of M operations takes time $O(M)$

- Recall the non-resizing work is $O(M)$ (i.e., $M \cdot O(1)$)
- The resizing work is proportional to the total number of element copies we do for the resizing
- So it suffices to show that:

 After M operations, we have done $< 2M$ total element copies

 (So average number of copies per operation is bounded by a constant)
Amount of copying

Claim: after M operations, we have done $< 2M$ total element copies

Let n be the size of the array after M operations

- Then we have done a total of:

 $$\frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \ldots \text{ INITIAL_SIZE } < n$$

 element copies

- Because we must have done at least enough push operations to cause resizing up to size n:

 $$M \geq \frac{n}{2}$$

- So

 $$2M \geq n > \text{number of element copies}$$
Other approaches

• If array grows by a constant amount (say 1000), operations are *not* amortized $O(1)$
 – After $O(M)$ operations, you may have done $\Theta(M^2)$ copies

• If array shrinks when 1/2 empty, operations are *not* amortized $O(1)$
 – Terrible case: \texttt{pop} once and shrink, \texttt{push} once and grow, \texttt{pop}
 once and shrink, …

• If array shrinks when 3/4 empty, it *is* amortized $O(1)$
 – Proof is more complicated, but basic idea remains: by the time
 an expensive operation occurs, many cheap ones occurred
Example #2: Queue with two stacks

A clever and simple queue implementation using only stacks

class Queue<
E>
{
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x) { in.push(x); }
 E dequeue() {
 if (out.isEmpty()) {
 while (!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

enqueue: A, B, C

C
B
A
in
out
Example #2: Queue with two stacks

A clever and simple queue implementation using only stacks

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x) { in.push(x); }
 E dequeue() {
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}
Example #2: Queue with two stacks

A clever and simple queue implementation using only stacks

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}
Example #2: Queue with two stacks

A clever and simple queue implementation using only stacks

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

dequeue twice

C B A
E D
in out
Example #2: Queue with two stacks

A clever and simple queue implementation using only stacks

```java
class Queue<E> {
    Stack<E> in = new Stack<E>();
    Stack<E> out = new Stack<E>();
    void enqueue(E x) { in.push(x); }
    E dequeue() {
        if(out.isEmpty()) {
            while(!in.isEmpty()) {
                out.push(in.pop());
            }
        }
        return out.pop();
    }
}
```

dequeue again

```
D C B A
```

```
in   out
```

```
E
```
Analysis

• dequeue is not \(O(1) \) worst-case because out might be empty and in may have lots of items

• But if the stack operations are (amortized) \(O(1) \), then any sequence of queue operations is amortized \(O(1) \)

 – The total amount of work done per element is 1 push onto in, 1 pop off of in, 1 push onto out, 1 pop off of out

 – When you reverse \(n \) elements, there were \(n \) earlier \(O(1) \) enqueue operations to average with
When is Amortized Analysis Useful?

- When the average per operation is all we care about (i.e., sum over all operations), amortized is perfectly fine

- If we need every operation to finish quickly (e.g., in a web server), amortized bounds may be too weak
Not always so simple

- Proofs for amortized bounds can be much more complicated
- Example: Splay trees are dictionaries with amortized $O(\log n)$ operations
 - See Chapter 4.5 if curious
- For more complicated examples, the proofs need much more sophisticated invariants and “potential functions” to describe how earlier cheap operations build up “energy” or “money” to “pay for” later expensive operations
 - See Chapter 11 if curious
- But complicated proofs have nothing to do with the code (which may be easy!)
Switching gears…

- Memory hierarchy/locality
Why do we need to know about the memory hierarchy/locality?

• One of the assumptions that Big-O makes is that all operations take the same amount of time
• Is this really true?
Definitions

- A **cycle** (for our purposes) is the time it takes to execute a single simple instruction (e.g. adding two registers together)
- **Memory latency** is the time it takes to access memory
CPU

~16-64+ registers

Cache

SRAM
8 KB - 4 MB

Main Memory

DRAM
2-10 GB

Disk

many GB

Time to access:

1 ns per instruction

2-10 ns

40-100 ns

a few milliseconds

(5-10 million ns)
What does this mean?

- It is much faster to do: Than:
 5 million arithmetic ops 1 disk access
 2500 L2 cache accesses 1 disk access
 400 main memory accesses 1 disk access

- Why are computers build this way?
 - Physical realities (speed of light, closeness to CPU)
 - Cost (price per byte of different storage technologies)
 - Under the right circumstances, this kind of hierarchy can simulate storage with access time of highest (fastest) level and size of lowest (largest) level
Microprocessor Transistor Counts 1971-2011 & Moore’s Law

curve shows transistor count doubling every two years
Processor-Memory Performance Gap
What can be done?

• **Goal**: attempt to reduce the accesses to slower levels
So, what can we do?

• The hardware automatically moves data from main memory into the caches for you
 – Replacing items already there
 – Algorithms are much faster if “data fits in cache” (often does)

• Disk accesses are done by software (e.g. ask operating system to open a file or database to access some records)

• So most code “just runs,” but sometimes it’s worth designing algorithms / data structures with knowledge of memory hierarchy
 – To do this, we need to understand locality
Locality

- **Temporal Locality** (locality in time)
 - If an item (a location in memory) is referenced, *that same location* will tend to be referenced again soon.

- **Spatial Locality** (locality in space)
 - If an item is referenced, items *whose addresses are close by* tend to be referenced soon.
How does data move up the hierarchy?

• Moving data up the hierarchy is slow because of latency (think distance to travel)
 – Since we’re making the trip anyway, might as well carpool
 • Get a block of data in the same time we could get a byte
 – Sends nearby memory because
 • It’s easy
 • Likely to be asked for soon (think fields/arrays)
• Once a value is in cache, may as well keep it around for a while; accessed once, a value is more likely to be accessed again in the near future (as opposed to some random other value)
Cache Facts

• Definitions:
 – Cache hit – address requested is in the cache
 – Cache miss – address requested is NOT in the cache
 – Block or page size – the number of contiguous bytes moved from disk to memory
 – Cache line size – the number of contiguous bytes moved from memory to cache
Examples

\[x = a + 6 \quad \text{miss} \]
\[y = a + 5 \quad \text{hit} \]
\[z = 8 \times a \quad \text{hit} \]
Examples

\[x = a + 6 \quad \text{miss} \quad x = a[0] + 6 \quad \text{miss} \]

\[y = a + 5 \quad \text{hit} \quad y = a[1] + 5 \quad \text{hit} \]

\[z = 8 \times a \quad \text{hit} \quad z = 8 \times a[2] \quad \text{hit} \]
Examples

\[x = a + 6 \text{ miss} \]
\[y = a + 5 \text{ hit} \]
\[z = 8 * a \text{ hit} \]

\[x = a[0] + 6 \text{ miss} \]
\[y = a[1] + 5 \text{ hit} \]
\[z = 8 * a[2] \text{ hit} \]

temporal locality
spatial locality
Locality and Data Structures

• Which has (at least the potential) for better spatial locality, arrays or linked lists?

Locality and Data Structures

- Which has (at least the potential) for better spatial locality, arrays or linked lists?
 - e.g. traversing elements

```
100 101 102 103 104 105 106
  1  2  3  4  5  6  7
   miss  hit  hit  hit  miss  hit  hit
```

- Only miss on first item in a cache line
Locality and Data Structures

- Which has (at least the potential) for better spatial locality, arrays or linked lists?
 - e.g. traversing elements
Locality and Data Structures

• Which has (at least the potential) for better spatial locality, arrays or linked lists?
 – e.g. traversing elements

 100 101 → 300 301 → 50 51 → 62 63
 miss hit miss hit miss hit miss hit

• Miss on every item (unless more than one randomly happen to be in the same cache line)