
Name: _______Solutions______

UW ID #: __________________________

CSE373 Spring 2015: Final
(closed book, closed notes, NO calculators allowed)

Instructions: Read the directions for each question carefully before answering. We may give partial

credit based on the work you write down, so if time permits, show your work! Use only the data

structures and algorithms we have discussed in class or that were mentioned in the book so far. The

questions are not necessarily in order of difficulty, so skip around as you answer them.

Note: For questions where you are drawing pictures or showing work, PLEASE CIRCLE YOUR

FINAL ANSWER FOR ANY CREDIT.

 Good luck!

Total: 89 points. Time: 1 hour 50 minutes.

 Question Max Points Score

1 7
2 8

3 8
4 14

5 6
6 16
7 17

8 12
9 1

Total 89

1) Short Answer [7pt]. Please give the best answer for each question.

(a) The idea that transistor density doubles roughly every 18 months is called ___Moore’s Law___

(b) The idea that adding more processors has diminishing returns is called ____Amdahl’s Law_____

(c) For an Array-based Stack with resizing, the worst case runtime of push is _______O(n)________

(d) For an Array-based Stack with resizing, the amortized runtime of push is _______ O(1)________

(e) Temporal locality is if an item (a location in memory) is referenced:

____________________________and it is soon after used again_________________________________

(f) Spatial locality is if an item (a location in memory) is referenced:

_______________________and items nearby in memory are used soon___________________________

(g) Draw the relationship between the sets P and NP based on what is currently known.

2) Algorithms by Design [8pt]: Label each algorithm by the most precise definition of its design. Possible

choices are listed below.

Brute Force Greedy Divide & Conquer Dynamic Programming Backtracking

(a) Finding an exit of a maze on foot ____Backtracking____

(b) Merge Sort __Divide & Conquer__

(c) Prim's ______Greedy_______

(d) Generating Fibonacci numbers _Dynamic Programming_

(e) Cracking passwords _____Brute Force_____

(f) Finding the shortest path _Greedy and/or Dynamic Programming_

(g) Placing 8 Queens ____Backtracking____

(h) Parallel array summation __Divide & Conquer__

3) Preserving Abstractions [8pts]: Suppose there is some class, Waldo, that has a constructor that takes

an argument of type Foo and stores the content of the Foo object for later use by other methods. In the

constructor for class Waldo, please write the code to store the Foo object with the minimum amount of

copying needed to preserve the abstraction.

(a) public class Bar {

public int x;

public int y;

public Bar(int _x, int _y){ x = _x; y = _y; }

}

public class Foo {

public Bar b;

public Bar c;

public Foo(Bar _b, Bar _c) { b = _b; c = _c; }

}

public class Waldo {

public Foo a;

public Waldo(Foo _a) {

//your answer here:

a = new Foo(new Bar(_a.b.x, _a.b.y), new Bar(_a.c.x,

_a.c.y));

}

}

(b) public class Bar {

public final int x;

public final int y;

public Bar(int _x, int _y){ x = _x; y = _y; }

}

public class Foo {

public final Bar b;

public final Bar c;

public Foo(Bar _b, Bar _c) { b = _b; c = _c; }

}

public class Waldo {

public Foo a;

public Waldo(Foo _a) {

//your answer here:

a = _a;

}

}

(c) public class Bar {

public int x;

public int y;

public Bar(int _x, int _y){ x = _x; y = _y; }

}

public class Foo {

public final Bar b;

public final Bar c;

public Foo(Bar _b, Bar_c) { b = _b; c = _c; }

}

public class Waldo {

public Foo a;

public Waldo (Foo _a) {

//your answer here:

a = new Foo(new Bar(_a.b.x, _a.b.y), new Bar(_a.c.x,

_a.c.y));

}

}

(d) public class Bar {

public final int x;

public int y;

public Bar(int _x, int _y){ x = _x; y = _y; }

}

public class Foo {

public final Bar b;

public Bar c;

public Foo(Bar _b, Bar _c) { b = _b; c = _c; }

}

public class Waldo {

public Foo a;

public Waldo(Foo _a) {

//your answer here:

a = new Foo(new Bar(_a.b.x, _a.b.y), new Bar(_a.c.x,

_a.c.y));

}

}

4) Parallelizing Quick Sort [14pts]: Below we have provided you with the sequential code for quicksort.

// Sorts the section of the array

public void quickSort(int[] arr, int lo, int hi){

if(lo >= hi) {

return;

 }

int pivotIndex = partition(arr, lo, hi);

quickSort(arr, lo, pivotIndex - 1);

quickSort(arr, pivotIndex + 1, hi);

}

// Uses arr[lo] as the pivot and returns the location of the pivot

public int partition(int[] arr, int lo, int hi) { … }

public void sort(int[] arr){

quickSort(arr, 0, arr.length);

}

(a) Transform the sequential code into parallel code using the skeleton code provided below:

public class QSThread extends java.lang.Thread {

int lo, hi;

int[] arr;

public QSThread(int[] a, int l, int h) {

 arr = a;

 lo = l;

 hi = h;

}

public void run() {

 // Base Case

 if(lo >= hi) {

return;

 }

int pivotIndex = partition(arr, lo, hi);

// Generate subproblems

QSThread left = new QSThread(arr, lo, pivotIndex - 1);

QSThread right= new QSThread(arr, pivotIndex + 1, hi);

 // Spawn off one thread, handle the other

 left.start();

 right.run();

 left.join();

}

public int partition(int[] arr, int lo, int hi) { … }

}

public void sort(int[] arr) {

 QSThread qs = new QSThread(arr, 0, arr.length);

 qs.run();

}

(b) What is the work done by the parallelized version of quicksort in the worst case?

(c) What is the work done by the parallelized version of quicksort in both the best case?

(d) What is the span of the parallelized version of quicksort in the worst case?

(e) What is the span of the parallelized version of quicksort in the best case?

5) Hash Table [6pts]: Write the code to add lazy deletion to a Hash Table full of integers greater than 0.

The table presumes that values that equal 0 are unfilled entries. Values are inserted using linear

probing. We will presume this table does not resize. Presume that we have provided the rest of the

code, fill out the delete method with lazy deletion. You can add fields or helper methods if needed.

Please indicate with a comment in the code how you chose to represent a deleted item.

Class HashTable() {

int[] arr;

int size;

HashTable() {

arr = new int[127];

size = 0;

}

void insert(int x) {…}

boolean find(int x) {…}

int hash(int x) {…}

void delete(int x) {

 int index = hash(x) % arr.length;

 while(arr[index] != 0) {

 if(arr[index] == x) {

 //Use negative numbers for lazy deletion

 arr[index] = -1;

size--;

 return;

 }

 index++;

 index %= arr.length;

 }

}

}

6) Sorting [16pts]: Sort the array [1 5 3 4 6 2] using HeapSort, using a MaxHeap and sorting in-place.

(a) Build the heap using insertions. Show your work and circle the final tree.

(b) What is the array of this heap?

(c) Start sorting the array by doing the first deleteMax operation. Draw the tree at the end of this

step and the partially sorted array after this step.

Sorting, continued:

(d) Sort the array [3 1 4 1 5 9 2 6] using MergeSort, draw the recursion tree showing how it splits

and merges.

3 1 4 1 5 9 2 6

 3 1 4 1 5 9 2 6

 3 1 4 1 5 9 2 6

 1 3 1 4 5 9 2 6

 1 1 3 4 2 5 6 9

 1 1 2 3 4 5 6 9

(e) Sort the following <key, value> pairs using stable Bucket Sort:

<2, 3> <7, 1> <1, 4> <8, 1> <2, 5> <8, 9> <2, 2> <8, 6>

<1, 4> <2, 3> <2, 5> <2, 2> <7, 1> <8, 1> <8, 9> <8, 6>

7) Graph Algorithms [17pts]:

a) Dijkstra’s and Prim’s algorithms are very similar. Circle the edges selected by Dijkstra’s algorithm

finding the shortest path from G to F in the left graph. Circle the edges selected by Prim’s algorithm on

the right.

 Dijkstra’s Edges Prim’s Edges

Cyan edges are optional, showing the edges

that Dijkstra selected to other nodes

Graph Algorithms, continued:

 (b) What edit could you make to Dijkstra’s algorithm to make it Prim’s algorithm?

Change what the cost is for determining what vertex to add to the known cloud. In Dijkstra’s algorithm,

the cost is the shortest path thus far from the start vertex. In Prim’s algorithm, the cost is the cost to add

the vertex to the known cloud.

(c) Will Prim’s algorithm and Kruskal’s algorithm always return the same tree? Explain.

Not always. There can be multiple minimum spanning trees. In that case, since the two algorithms select

the edges in different orders, they may end up with different trees.

While implementing Dijkstra’s algorithm, you can use a priority queue to keep track of the next-closest

Vertex to add. When visiting a node you have already seen, you can either 1) Decrease the key of that

Vertex entry or 2) Add redundant vertices and while popping out the next closest Vertex ignore entries

of Vertices that you have already seen before. For each question, answers in terms of |V| and |E| using

tight asymptotic bounds. Presume that |E| > |V|.

(d) Using decreaseKey(), what is 1) The time it takes to insert a Vertex into the queue and 2) The space

can the queue take up?

Time: ___O(log|V|)__ Space: ___O(|V|)___

(e) Using redundant vertices, what is 1) The time it takes to insert a Vertex into the queue and 2) The

space can the queue take up?

Time: _ O(log|V|) or O(log|E|)_ Space: ___ O(|E|)__

(f) Using the priority queue with decreaseKey(), what is the runtime of Dijkstra’s algorithm?

___ O(|E|log|V|)___

8) Selecting the best data structure [12pts]: For the following scenarios, indicate the best data structure

to use. Make sure to be specific.

(a) You want to be able to add, find, remove, and produce a sorted list of students which are stored by

their ID number relatively quickly using the least amount of memory.

AVL Tree

(b) You want to store student profiles for fast retrieval using their student ID as a key.

HashTable

(c) A company has sold out of a product and wants to keep track of which orders to fill when the

product comes back in stock.

Queue

(d) You have a bunch of family trees and given two people you want to see if they have a common

ancestor.

UpTree / Union Find

(e) You want to create a social networking site and want to track the friendships between people all

over the world.

Adjacency List

(f) You want to keep track of friendships in a closely knit group.

Adjacency Matrix

9) Bonus [1pt]: What is your favorite data structure?

Any answer.

SCRATCH PAPER:

SCRATCH PAPER:

