
Java Basics
CSE 373, Fall 2015

Megan Hopp

Definitions
● Object

○ Objects have states and behaviors. Objects are instances of classes.

● Class
○ A class can be defined as a template/ blueprint that describes the behaviours/states that

object of its type support

● Method
○ A method is basically a behaviour. A class can contain many methods. It is in methods

where the logics are written, data is manipulated and all the actions are executed.

● Instance Variable
○ Each object has its unique set of instance variables. An object's state is created by the

values assigned to these instance variables.
○ Also referred to as a “field” or “member”

Style: Naming Conventions

● Class Name
○ Start with capital letter, then camel case (ex. ‘MyClassName’)

● Method Name
○ Start with lower-case letter, then camel case (ex. ‘myMethodName’)

● Program File Name
○ Should exactly match class name with ‘.java’ appended (ex. ‘MyClassName.java’)

Style: Comments
Should sufficiently comment all classes, methods, and important variables
(typically fields in a class or any important variables that are not obvious)

● What is the function of each?
● Information on parameters/returns
● Try to avoid implementation details

Comment Style Convention:

● Large block comments should use: /* */
● Single line comments should use: //

Style: JavaDoc
Not required, but can use JavaDoc if you like.

Javadoc convention for writing specifications:

● Method signature: Text description of method
● @param: description of what value gets passed in
● @return: description of what value gets returned
● @throws: description of what exceptions may occur and why

Style: JavaDoc Example
/**

 * This method does something, and this describes it.

 *

 * @param firstParameter this describes the boolean parameter

 * @throws MyException when XYZ condition is not met

 * @return some int value that should be returned

 */

 public int method1(boolean firstParameter) {

 ...

Java Variables: Scope
They have "scope" which is essentially the realm in which they exist.

● Method-specific variables (declared within the method or passed in as a
parameter)

● Instance variables (non-static: declared within class)
● Class variables (static variables that apply to all instances of a given class)

Higher-level variables have larger scope, for example a class variable/field is
visible to the class, any methods within that class, and even smaller scopes

Inheritance

Java objects can use inheritance.

Avoids redundant code/logic by allowing subclasses to use their superclass's
code or behavior (public or protected fields, methods, etc.)

Inheritance: Example
public class Dog {

 public void bark() {

 System.out.println(“woof”);

 }

}

public class Husky extends Dog {

 // empty class, no implemented methods

}

Dog dog = new Husky();

dog.bark(); // prints out “woof”

Interfaces
Java classes that specify the
required methods that MUST
be present/implemented in an
implementation of that
interface

interface Human {

 public void eat();

 public void sleep();

 public void breathe();

}

class Kevin implements Human {

 public void eat() {

 System.out.println("nom");

 }

 public void sleep() {

 System.out.println("zzz");

 }

 public void breathe() {

 System.out.println("skadoosh");

 }

}

Loops
For Loops

● for finite/known number of iterations

While Loops

● for unknown number of iterations

● we don't know on which iteration the loop
will terminate, only that it will terminate
when the condition is not met

for (int i = 0; i < 5; i++) {

// do something

}

while (input.hasNextLine()) {

// do something

}

Algorithm Analysis
Big-Oh Notation:

Worst-case bound on algorithm’s performance

Big-Omega Notation:

Best-Case bound on algorithm’s performance

*Note: we will cover this in detail in the course, but it’s a good idea to refresh
your memory from 143

Recursion
A method or function calling itself.

Base case:

● Logic to return a value without any recursive calls. Indicated by a
condition to ensure that we don’t enter an infinite series of recursive
calls

● Possible to have more than 1 base case

Recursion case:

● Logic to kickstart a recursive call, updating value(s) usually toward
converging with the base case

Helpful Links
Style Guide (found here)

Past CSE 143 Course Websites (found here)

Practice-It! (found here)

https://courses.cs.washington.edu/courses/cse373/15au/programming_guidelines.html
http://courses.cs.washington.edu/courses/cse143/
http://practiceit.cs.washington.edu/practiceit/

