CSE373: Data Structures & Algorithms
Lecture 9: Disjoint Sets & Union-Find

Kevin Quinn
Fall 2015
The plan

- What are *disjoint sets*
 - And how are they “the same thing” as *equivalence relations*

- The union-find ADT for disjoint sets

- Applications of union-find

Next lecture:

- Basic implementation of the ADT with “up trees”

- Optimizations that make the implementation much faster
Disjoint sets

• A set is a collection of elements (no-repeats)

• Two sets are disjoint if they have no elements in common
 – \(S_1 \cap S_2 = \emptyset \)

• Example: \{a, e, c\} and \{d, b\} are disjoint

• Example: \{x, y, z\} and \{t, u, x\} are not disjoint
Partitions

A partition P of a set S is a set of sets $\{S_1, S_2, \ldots, S_n\}$ such that every element of S is in exactly one S_i.

Put another way:

- $S_1 \cup S_2 \cup \ldots \cup S_k = S$
- $i \neq j$ implies $S_i \cap S_j = \emptyset$ (sets are disjoint with each other)

Example:

- Let S be $\{a, b, c, d, e\}$
- One partition: $\{a\}, \{d, e\}, \{b, c\}$
- Another partition: $\{a, b, c\}, \emptyset, \{d\}, \{e\}$
- A third: $\{a, b, c, d, e\}$
- Not a partition: $\{a, b, d\}, \{c, d, e\}$
- Not a partition of S: $\{a, b\}, \{e, c\}$
Binary relations

- **$S \times S$** is the set of all pairs of elements of S
 - Example: If $S = \{a, b, c\}$
 then $S \times S = \{(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c)\}$

- A **binary relation** R on a set S is any subset of $S \times S$
 - Write $R(x,y)$ to mean (x,y) is “in the relation”
 - (Unary, ternary, quaternary, … relations defined similarly)

- Examples for $S =$ people-in-this-room
 - Sitting-next-to-each-other relation
 - First-sitting-right-of-second relation
 - Went-to-same-high-school relation
 - Same-gender-relation
 - First-is-younger-than-second relation
Properties of binary relations

- A binary relation \(R \) over set \(S \) is **reflexive** means \(R(a,a) \) for all \(a \) in \(S \).

- A binary relation \(R \) over set \(S \) is **symmetric** means \(R(a,b) \) if and only if \(R(b,a) \) for all \(a,b \) in \(S \).

- A binary relation \(R \) over set \(S \) is **transitive** means

 If \(R(a,b) \) and \(R(b,c) \) then \(R(a,c) \) for all \(a,b,c \) in \(S \).

- Examples for \(S = \text{people-in-this-room} \)

 - Sitting-next-to-each-other relation

 - First-sitting-right-of-second relation

 - Went-to-same-high-school relation

 - Same-gender-relation

 - First-is-younger-than-second relation
Equivalence relations

• A binary relation R is an equivalence relation if R is reflexive, symmetric, and transitive

• Examples
 – Same gender
 – Connected roads in the world
 – *Graduated* from same high school?
 – …
Every partition induces an *equivalence relation*
Every equivalence relation *induces* a partition

Suppose $P=\{S_1, S_2, \ldots, S_n\}$ be a partition
- Define $R(x,y)$ to mean x and y are in the same S_i
 - R is an equivalence relation

Suppose R is an equivalence relation over S
- Consider a set of sets S_1, S_2, \ldots, S_n where
 1. x and y are in the same S_i if and only if $R(x,y)$
 2. Every x is in some S_i
 - This set of sets is a partition
Example

• Let S be \{a,b,c,d,e\}

• One partition: \{a,b,c\}, \{d\}, \{e\}

• The corresponding equivalence relation:
 \[(a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a), (b,c), (c,b), (d,d), (e,e)\]
The plan

• What are disjoint sets
 – And how are they “the same thing” as equivalence relations

• The union-find ADT for disjoint sets

• Applications of union-find

Next lecture:

• Basic implementation of the ADT with “up trees”

• Optimizations that make the implementation much faster
The operations

- Given an unchanging set S, **create** an initial partition of a set
 - Typically each item in its own subset: \{a\}, \{b\}, \{c\}, …
 - Give each subset a “name” by choosing a representative element

- Operation **find** takes an element of S and returns the representative element of the subset it is in

- Operation **union** takes two subsets and (permanently) makes one larger subset
 - A different partition with one fewer set
 - Affects result of subsequent **find** operations
 - Choice of representative element up to implementation
Example

- Let $S = \{1,2,3,4,5,6,7,8,9\}$
- Let initial partition be (will highlight representative elements red)
 $\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}$
- $\text{union}(2,5)$:
 $\{1\}, \{2, 5\}, \{3\}, \{4\}, \{6\}, \{7\}, \{8\}, \{9\}$
- $\text{find}(4) = 4$, $\text{find}(2) = 2$, $\text{find}(5) = 2$
- $\text{union}(4,6)$, $\text{union}(2,7)$
 $\{1\}, \{2, 5, 7\}, \{3\}, \{4, 6\}, \{8\}, \{9\}$
- $\text{find}(4) = 6$, $\text{find}(2) = 2$, $\text{find}(5) = 2$
- $\text{union}(2,6)$
 $\{1\}, \{2, 4, 5, 6, 7\}, \{3\}, \{8\}, \{9\}$
No other operations

• All that can “happen” is sets get unioned
 – No “un-union” or “create new set” or …

• As always: trade-offs – implementations will exploit this small ADT

• Surprisingly useful ADT: list of applications after one example
 – But not as common as dictionaries or priority queues
Example application: maze-building

- Build a random maze by erasing edges
 - Possible to get from anywhere to anywhere
 - Including “start” to “finish”
 - No loops possible without backtracking
 - After a “bad turn” have to “undo”
Maze building

Pick start edge and end edge
Repeatedly pick random edges to delete

One approach: just keep deleting random edges until you can get from start to finish
Problems with this approach

1. How can you tell when there is a path from start to finish?
 - We do not really have an algorithm yet

2. We have cycles, which a “good” maze avoids
 - Want one solution and no cycles
Revised approach

• Consider edges in random order

• But only delete them if they introduce no cycles (how? TBD)

• When done, will have one way to get from any place to any other place (assuming no backtracking)

• Notice the funny-looking tree in red
Cells and edges

• Let’s number each cell
 – 36 total for 6 x 6
• An (internal) edge (x,y) is the line between cells x and y
 – 60 total for 6x6: (1,2), (2,3), …, (1,7), (2,8), …

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>
The trick

- Partition the cells into **disjoint sets**: “are they connected”
 - Initially every cell is in its own subset
- If an edge would connect two different subsets:
 - then remove the edge and **union** the subsets
 - else leave the edge because removing it makes a cycle
The algorithm

• $P =$ disjoint sets of connected cells, initially each cell in its own 1-element set
• $E =$ set of edges not yet processed, initially all (internal) edges
• $M =$ set of edges kept in maze (initially empty)

while P has more than one set {
 – Pick a random edge (x,y) to remove from E
 – $u =$ find(x)
 – $v =$ find(y)
 – if $u == v$
 then add (x,y) to M // same subset, do not create cycle
 else union(u,v) // do not put edge in M, connect subsets
}

Add remaining members of E to M, then output M as the maze
Example step

Pick (8, 14)

\[
\begin{array}{cccccc}
\text{Start} & 1 & 2 & 3 & 4 & 5 & 6 \\
7 & 8 & 9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16 & 17 & 18 \\
19 & 20 & 21 & 22 & 23 & 24 \\
25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 \\
\end{array}
\]

\[
\begin{align*}
\{1,2,7,8,9,13,19\} \\
\{3\} \\
\{4\} \\
\{5\} \\
\{6\} \\
\{10\} \\
\{11,17\} \\
\{12\} \\
\{14,20,26,27\} \\
\{15,16,21\} \\
\{18\} \\
\{25\} \\
\{28\} \\
\{31\} \\
\{22,23,24,29,30,32,33,34,35,36\}
\end{align*}
\]
Example step

Find(8) = 7
Find(14) = 20
Union(7, 20)
Add edge to M step

Pick (19,20)

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

P

$\{1,2,7,8,9,13,19,14,20,26,27\}$

$\{3\}$

$\{4\}$

$\{5\}$

$\{6\}$

$\{10\}$

$\{11,17\}$

$\{12\}$

$\{15,16,21\}$

$\{18\}$

$\{25\}$

$\{28\}$

$\{31\}$

$\{22,23,24,29,30,32,33,34,35,36\}$
At the end

- Stop when P has one set
- Suppose green edges are already in M and black edges were not yet picked
 - Add all black edges to M

P
{1,2,3,4,5,6,7,… 36}
Other applications

• Maze-building is:
 – Cute
 – A surprising use of the union-find ADT

• Many other uses (which is why an ADT taught in CSE373):
 – Road/network/graph connectivity (will see this again)
 • “connected components” e.g., in social network
 – Partition an image by connected-pixels-of-similar-color
 – Type inference in programming languages

• Not as common as dictionaries, queues, and stacks, but valuable because implementations are very fast, so when applicable can provide big improvements