CSE373: Data Structures & Algorithms
Lecture 17: Hash Collisions

Kevin Quinn
Fall 2015
Hash Tables: Review

- Aim for constant-time (i.e., $O(1)$) find, insert, and delete
 - “On average” under some reasonable assumptions

- A hash table is an array of some fixed size
 - But growable as we’ll see

![Diagram of hash table process]

TableSize - 1
Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
 – Ideas?
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10
Separate Chaining

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42

with mod hashing

and TableSize = 10
Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>12</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>107</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10
Thoughts on chaining

• Worst-case time for \texttt{find}?
 – Linear
 – But only with really bad luck or bad hash function
 – So not worth avoiding (e.g., with balanced trees at each bucket)

• Beyond asymptotic complexity, some “data-structure engineering” may be warranted
 – Linked list vs. array vs. chunked list (lists should be short!)
 – Move-to-front
 – Maybe leave room for 1 element (or 2?) in the table itself, to optimize constant factors for the common case
 • A time-space trade-off…
Time vs. space (constant factors only here)
More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \quad \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:

• Each “unsuccessful” find compares against λ items

So we like to keep λ fairly low (e.g., 1 or 1.5 or 2) for chaining
Alternative: Use empty space in the table

• Another simple idea: If $h(key)$ is already full,
 – try $(h(key) + 1) \mod TableSize$. If full,
 – try $(h(key) + 2) \mod TableSize$. If full,
 – try $(h(key) + 3) \mod TableSize$. If full...

• Example: insert 38, 19, 8, 109, 10

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alternative: Use empty space in the table

- Another simple idea: If $h(key)$ is already full,
 - try $(h(key) + 1) \% \text{TableSize}$. If full,
 - try $(h(key) + 2) \% \text{TableSize}$. If full,
 - try $(h(key) + 3) \% \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10
Alternative: Use empty space in the table

- Another simple idea: If \(h(\text{key}) \) is already full,
 - try \((h(\text{key}) + 1) \mod \text{TableSize}\). If full,
 - try \((h(\text{key}) + 2) \mod \text{TableSize}\). If full,
 - try \((h(\text{key}) + 3) \mod \text{TableSize}\). If full...

- Example: insert 38, 19, 8, 109, 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>38</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
Alternative: Use empty space in the table

- Another simple idea: If $h(key)$ is already full,
 - try $(h(key) + 1) \% \text{TableSize}$. If full,
 - try $(h(key) + 2) \% \text{TableSize}$. If full,
 - try $(h(key) + 3) \% \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alternative: Use empty space in the table

- Another simple idea: If \(h(\text{key}) \) is already full,
 - try \((h(\text{key}) + 1) \mod \text{TableSize}\). If full,
 - try \((h(\text{key}) + 2) \mod \text{TableSize}\). If full,
 - try \((h(\text{key}) + 3) \mod \text{TableSize}\). If full...

- Example: insert 38, 19, 8, 109, 10

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>109</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>/</td>
</tr>
<tr>
<td>4</td>
<td>/</td>
</tr>
<tr>
<td>5</td>
<td>/</td>
</tr>
<tr>
<td>6</td>
<td>/</td>
</tr>
<tr>
<td>7</td>
<td>/</td>
</tr>
<tr>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
</tr>
</tbody>
</table>
```
Open addressing

This is *one example* of open addressing

In general, **open addressing** means resolving collisions by trying a sequence of other positions in the table

Trying the next spot is called **probing**

- We just did **linear probing**
 - i^{th} probe was $(h(key) + i) \mod \text{TableSize}$
- In general have some **probe function** f and use $h(key) + f(i) \mod \text{TableSize}$

Open addressing does poorly with high load factor λ

- So want larger tables
- Too many probes means no more $O(1)$
Terminology

We and the book use the terms
- “chaining” or “separate chaining”
- “open addressing”

Very confusingly,
- “open hashing” is a synonym for “chaining”
- “closed hashing” is a synonym for “open addressing”

(If it makes you feel any better,
most trees in CS grow upside-down 😊)
Other operations

insert finds an open table position using a probe function

What about **find**?
- Must use same probe function to “retrace the trail” for the data
- Unsuccessful search when reach empty position

What about **delete**?
- **Must** use “lazy” deletion. Why?
 - Marker indicates “no data here, but don’t stop probing”
- Note: **delete** with chaining is plain-old list-remove
(Primary) Clustering

It turns out linear probing is a *bad idea*, even though the probe function is quick to compute (which is a good thing).

Tends to produce *clusters*, which lead to long probing sequences
- Called primary clustering
- Saw this starting in our example
Analysis of Linear Probing

- **Trivial fact**: For any $\lambda < 1$, linear probing will find an empty slot
 - It is “safe” in this sense: no infinite loop unless table is full

- **Non-trivial facts we won’t prove**: Average # of probes given λ (in the limit as TableSize $\to \infty$)
 - Unsuccessful search: \[
 \frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)^2} \right)
 \]
 - Successful search: \[
 \frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)} \right)
 \]

- This is pretty bad: need to leave sufficient empty space in the table to get decent performance
In a chart

- Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes “large table” but point remains)

- By comparison, chaining performance is linear in λ and has no trouble with $\lambda > 1$
Quadratic probing

- We can avoid primary clustering by changing the probe function
 \((h(key) + f(i)) \mod \text{TableSize}\)

- A common technique is quadratic probing:
 \(f(i) = i^2\)
 - So probe sequence is:
 - 0\(^{th}\) probe: \(h(key) \mod \text{TableSize}\)
 - 1\(^{st}\) probe: \((h(key) + 1) \mod \text{TableSize}\)
 - 2\(^{nd}\) probe: \((h(key) + 4) \mod \text{TableSize}\)
 - 3\(^{rd}\) probe: \((h(key) + 9) \mod \text{TableSize}\)
 - ...
 - \(i^{th}\) probe: \((h(key) + i^2) \mod \text{TableSize}\)

- Intuition: Probes quickly “leave the neighborhood”
Quadratic Probing Example

TableSize = 10
Insert:
89
18
49
58
79
Quadratic Probing Example

TableSize = 10
Insert:
89
18
49
58
79
Quadratic Probing Example

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Size: 10

Insert:
- 89
- 18
- 49
- 58
- 79
Quadratic Probing Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
</tr>
</tbody>
</table>

TableSize = 10
Insert:
89
18
49
58
79
Quadratic Probing Example

TableSize = 10
Insert:
89
18
49
58
79
Quadratic Probing Example

<table>
<thead>
<tr>
<th>TableSize=10</th>
<th>Insert:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
</tr>
</tbody>
</table>
Another Quadratic Probing Example

Table Size = 7

Insert:
- 76: (76 % 7 = 6)
- 40: (40 % 7 = 5)
- 48: (48 % 7 = 6)
- 5: (5 % 7 = 5)
- 55: (55 % 7 = 6)
- 47: (47 % 7 = 5)
Another Quadratic Probing Example

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)
Another Quadratic Probing Example

Table Size = 7

Insert:
- 76 \((76 \mod 7 = 6) \)
- 40 \((40 \mod 7 = 5) \)
- 48 \((48 \mod 7 = 6) \)
- 5 \((5 \mod 7 = 5) \)
- 55 \((55 \mod 7 = 6) \)
- 47 \((47 \mod 7 = 5) \)
Another Quadratic Probing Example

TableSize = 7

Insert:
76 \((76 \% 7 = 6)\)
40 \((40 \% 7 = 5)\)
48 \((48 \% 7 = 6)\)
5 \((5 \% 7 = 5)\)
55 \((55 \% 7 = 6)\)
47 \((47 \% 7 = 5)\)
Another Quadratic Probing Example

TableSize = 7

<table>
<thead>
<tr>
<th>Insert</th>
<th>Index in Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>(76 \div 7 = 6)</td>
</tr>
<tr>
<td>40</td>
<td>(40 \div 7 = 5)</td>
</tr>
<tr>
<td>48</td>
<td>(48 \div 7 = 6)</td>
</tr>
<tr>
<td>5</td>
<td>(5 \div 7 = 5)</td>
</tr>
<tr>
<td>55</td>
<td>(55 \div 7 = 6)</td>
</tr>
<tr>
<td>47</td>
<td>(47 \div 7 = 5)</td>
</tr>
</tbody>
</table>
Table Size = 7

Insert:
76 \quad (76 \% 7 = 6)
40 \quad (40 \% 7 = 5)
48 \quad (48 \% 7 = 6)
5 \quad (\ 5 \ % 7 = 5)
55 \quad (55 \% 7 = 6)
47 \quad (47 \% 7 = 5)
Another Quadratic Probing Example

TableSize = 7

Insert:
76 \quad (76 \% 7 = 6)
40 \quad (40 \% 7 = 5)
48 \quad (48 \% 7 = 6)
5 \quad (5 \% 7 = 5)
55 \quad (55 \% 7 = 6)
47 \quad (47 \% 7 = 5)

Doh!: For all \(n \), \((n^2 + 5) \% 7 \) is 0, 2, 5, or 6

- Excel shows takes “at least” 50 probes and a pattern
- Proof uses induction and \((n^2 + 5) \% 7 = ((n-7)^2 + 5) \% 7 \)
 - In fact, for all \(c \) and \(k \), \((n^2 + c) \% k = ((n-k)^2 + c) \% k \)
From Bad News to Good News

• Bad news:
 – Quadratic probing can cycle through the same full indices, never terminating despite table not being full

• Good news:
 – If TableSize is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in at most $\text{TableSize}/2$ probes
 – So: If you keep $\lambda < \frac{1}{2}$ and TableSize is prime, no need to detect cycles

 – Optional
 • Also, slightly less detailed proof in textbook
 • Key fact: For prime T and $0 < i, j < T/2$ where $i \neq j$,
 $$(k + i^2) \% T \neq (k + j^2) \% T$$ (i.e., no index repeat)
Clustering reconsidered

• Quadratic probing does not suffer from primary clustering: no problem with keys initially hashing to the same neighborhood

• But it’s no help if keys initially hash to the same index
 – Called secondary clustering

• Can avoid secondary clustering with a probe function that depends on the key: double hashing…
Double hashing

Idea:
- Given two good hash functions h and g, it is very unlikely that for some key, $h(\text{key}) = g(\text{key})$
- So make the probe function $f(i) = i \times g(\text{key})$

Probe sequence:
- 0^{th} probe: $h(\text{key}) \mod \text{TableSize}$
- 1^{st} probe: $(h(\text{key}) + g(\text{key})) \mod \text{TableSize}$
- 2^{nd} probe: $(h(\text{key}) + 2 \times g(\text{key})) \mod \text{TableSize}$
- 3^{rd} probe: $(h(\text{key}) + 3 \times g(\text{key})) \mod \text{TableSize}$
- \ldots
- i^{th} probe: $(h(\text{key}) + i \times g(\text{key})) \mod \text{TableSize}$

Detail: Make sure $g(\text{key})$ cannot be 0
Double-hashing analysis

- Intuition: Because each probe is “jumping” by $g(\text{key})$ each time, we “leave the neighborhood” and “go different places from other initial collisions”

- But we could still have a problem like in quadratic probing where we are not “safe” (infinite loop despite room in table)
 - It is known that this cannot happen in at least one case:
 - $h(\text{key}) = \text{key} \mod p$
 - $g(\text{key}) = q - (\text{key} \mod q)$
 - $2 < q < p$
 - p and q are prime
More double-hashing facts

• Assume “uniform hashing”
 – Means probability of \(g(\text{key1}) \mod p = g(\text{key2}) \mod p \) is \(\frac{1}{p} \)

• Non-trivial facts we won’t prove:
 Average # of probes given \(\lambda \) (in the limit as \(\text{TableSize} \to \infty \))
 – Unsuccessful search (intuitive):
 \[
 \frac{1}{1 - \lambda}
 \]
 – Successful search (less intuitive):
 \[
 \frac{1}{\lambda \log_e \left(\frac{1}{1 - \lambda} \right)}
 \]

• Bottom line: unsuccessful bad (but not as bad as linear probing), but successful is not nearly as bad
Rehashing

- As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything.

- With chaining, we get to decide what “too full” means:
 - Keep load factor reasonable (e.g., < 1)?
 - Consider average or max size of non-empty chains?

- For open addressing, half-full is a good rule of thumb.

- New table size:
 - Twice-as-big is a good idea, except, uhm, that won’t be prime!
 - So go *about* twice-as-big
 - Can have a list of prime numbers in your code since you won’t grow more than 20-30 times.