CSE373: Data Structures & Algorithms
Lecture 23: Intro to Artificial Intelligence
and Game Theory

Based on slides adapted Luke Zettlemoyer, Dan Klein, Pieter Abbeel,
Dan Weld, Stuart Russell or Andrew Moore



Game Playing State-of-the-Art

Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all
positions involving 8 or fewer pieces on the board, a total of 443,748,401,247
positions. Checkers is now solved!

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-
game match in 1997. Deep Blue examined 200 million positions per second,
used very sophisticated evaluation and undisclosed methods for extending
some lines of search up to 40 ply. Current programs are even better, if less
historic.

Othello: Human champions refuse to compete against computers, which are
too good.

Go: Human champions are beginning to be challenged by machines, though the
best humans still beat the best machines. In go, b > 300, so most programs use
pattern knowledge bases to suggest plausible moves, along with aggressive
pruning.
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Game Playing

* Many different kinds of games

e Choices:
— Deterministic or stochastic?
— One, two, or more players?
— Perfect information (can you see the state)?

* Want algorithms for calculating a strategy which
recommends a move in each state. We will try to
combine the algorithms and structures we have seen

thus far.



Deterministic Games

 Many possible formalizations, one is:
— States: S (start at s;)
— Players: P = {1...N} (usually take turns)
— Actions: A (may depend on player / state)
—Transition Function: SxA — S

e Solution for a player is a policy: S — A



Zero-Sum Games

e Zero-Sum Games

Players have opposite utilities (values
on outcomes)

Lets us think of a single value that one
maximizes and the other minimizes

Adversarial, pure competition

General Games

Players have independent utilities (values
on outcomes)

Cooperation, indifference, competition, &
more are possible




Non Zero-Sum Games

Two criminals are taken in, each
prisoner is in solitary confinement with no
means of communicating with the other.

The prosecutors lack sufficient
evidence to convict the pair on the principal
charge. They hope to get both sentenced to
a year in prison on a lesser charge.

Each prisoner may either betray the
other by testifying that the other committed
the crime, or to cooperate with the other by
remaining silent.

What should you do?
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Tic-tac-toe Game Tree
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Adversarial Search (Minimax)

* Deterministic, zero-sum games: Minimax values:
— Tic-tac-toe, chess, checkers computedirecursively

— One player maximizes result .
— The other minimizes result
e« Minimax search: min

ma
— A state-space search tree
— Players alternate turns / \ / \
— Compute each node’s minimax é é é é
value: the best achievable utility

against a rational (optimal)
adversary

Terminal values:
part of the game

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu



Minimax Implementation

def -m.a.x—\-/alue(state): def min-value(state):
|n|t|a||2ev=-00 initializev:_|_oo
for each successor of state: <:> for each successor of state:
v = max(v, min- v = min(v, max-

value(successor)) value(successor))
SR & return v
V(is)=  max V(s V()= min V(s
s’ €successors(s) s€successors(s’)

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu



Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s value
if the next agent is MIAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def max-value(state):
initialize v = -0

def min-value(state):
initialize v = +oo

for each successor of state: for each successor of state:
v = max(v, min- < > v = min(v, max-
value(successor)) value(successor))

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu



Concrete Minimax Example

max

min




Minimax Properties

= Optimal? " b =branching factor

" m=moves (depth)
" Yes, against perfect player. Otherwise?

max
* Time complexity
m O(bm) |
* Space complexity? min
= O(bm)
= For chess, b =35, m =100 10] 10 9 | [100

= Exact solution is completely infeasible

= But, do we need to explore the whole tree?



Tic-Tac-Toe is easy, what about Chess?

 We know chess is NP-Hard (EXP-complete to be precise), but
can we still write a good chess solver?

* Assuming 50-move-rule, games are of finite length:
average game is about 40 moves, with about 30 possible
moves per turn.

* Some estimate about 101%° reasonable games of chess (called the
Shannon Number)

* This decision tree is way too big to create

 We must use better heuristics than just decision trees to
successfully play chess



A Few Optimizations

Transposition Table
— Store lookup table for similar looking parts of the table

Iterative Deepening

— Don’t search entire tree all at once, incrementally increase
search space

Aspiration Windows
— Make educated guesses about future search space

Alpha-Beta Pruning

— Prune branches that cannot result in the optimal solution



o-f Pruning

General configuration

— o is the best value that MAX
can get at any choice point
along the current path

— If n becomes worse than o,
MAX will avoid it, so can
stop considering n’s other
children

— Define f similarly for MIN

Player

Opponent

Player

Opponent



Pruning Example

Progress of search...
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ot — the best value

for max along the path

B - the best value

for min along the path
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max B=oo
o - the best value

for max along the path
B - the best value

for min along the path
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o - the best value
for max along the path
B - the best value
for min along the path
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o - the best value

B - the best value

max

min | 29
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for max along the path
for min along the path
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ol — the best value

for max along the path

B - the best value

for min along the path
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Alpha-Beta Pruning Properties

This pruning has no effect on final result at the root

Values of intermediate nodes might be wrong!
— but, they are bounds

Good child ordering improves effectiveness of pruning

With “perfect ordering”:
— Time complexity drops to O(b™?)
— Doubles solvable depth!
— Full search of, e.g. chess, is still hopeless...



Alpha-Beta Implementation

ao: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B): def min-value(state , a, B):

initialize v = -0 initialize v = +o0

for each successor of state: for each successor of state:
v = max(v, v = min(v,

value(successor, a, B)) value(successor, a, B))

if v>Preturnv ifv<areturnv
o = max(a, v) B = min(B, v)

return v return v
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