CSE373: Data Structures & Algorithms
Lecture 20: Beyond Comparison Sorting

Kevin Quinn
Fall 2015
The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Simple algorithms: \(O(n^2) \)
- Insertion sort
- Selection sort
- Shell sort
- ...

Fancier algorithms: \(O(n \log n) \)
- Heap sort
- Merge sort
- Quick sort (avg)
- ...

Comparison lower bound: \(\Omega(n \log n) \)

Specialized algorithms: \(O(n) \)
- Bucket sort
- Radix sort

Handling huge data sets
- External sorting
How Fast Can We Sort?

- Heapsort & mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running time
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$
 - Instead: we know that this is impossible
 - **Assuming our comparison model:** The only operation an algorithm can perform on data items is a 2-element comparison
A General View of Sorting

• Assume we have \(n \) elements to sort
 – For simplicity, assume none are equal (no duplicates)

• How many permutations of the elements (possible orderings)?

• Example, \(n=3 \)

 \[
 \begin{align*}
 \end{align*}
 \]

• In general, \(n \) choices for least element, \(n-1 \) for next, \(n-2 \) for next, …
 – \(n(n-1)(n-2)\ldots(2)(1) = n! \) possible orderings
Counting Comparisons

• So every sorting algorithm has to “find” the right answer among the \(n! \) possible answers
 – Starts “knowing nothing”, “anything is possible”
 – Gains information with each comparison
 – **Intuition**: Each comparison can *at best* eliminate *half* the remaining possibilities
 – Must narrow answer down to a single possibility

• **What we can show**: Any sorting algorithm must do *at least* \((1/2)n \log n - (1/2)n \) (which is \(\Omega(n \log n) \)) comparisons
 – Otherwise there are at least two permutations among the \(n! \) possible that cannot yet be distinguished, so the algorithm would have to guess and could be wrong [incorrect algorithm]
Optional: Counting Comparisons

• Don’t know what the algorithm is, but it cannot make progress without doing comparisons
 – Eventually does a first comparison “is \(a < b \) ?"
 – Can use the result to decide what second comparison to do
 – Etc.: comparison \(k \) can be chosen based on first \(k-1 \) results

• Can represent this process as a decision tree
 – Nodes contain “set of remaining possibilities”
 • Root: None of the \(n! \) options yet eliminated
 – Edges are “answers from a comparison”
 – The algorithm does not actually build the tree; it’s what our proof uses to represent “the most the algorithm could know so far” as the algorithm progresses
Optional: One Decision Tree for n=3

- The leaves contain all the possible orderings of a, b, c
- A different algorithm would lead to a different tree
Optional: Example if $a < c < b$

Possible orders:
- $a < b < c, b < c < a,$
- $a < c < b, c < a < b,$
- $b < a < c, c < b < a$

Actual order:
- $a < c, a < c < b, c < a < b$
- $b < c, b < c < a$
- $c < a, c < b < a$
- $b < c, b < a < c$
- $b < a < c$
Optional: What the Decision Tree Tells Us

- A binary tree because each comparison has 2 outcomes
 - (We assume no duplicate elements)
 - (Would have 1 outcome if algorithm asks redundant questions)
 This means that poorly implemented algorithms could yield deeper trees (categorically bad)

- Because any data is possible, any algorithm needs to ask enough questions to produce all $n!$ answers
 - Each answer is a different leaf
 - So the tree must be big enough to have $n!$ leaves
 - Running any algorithm on any input will at best correspond to a root-to-leaf path in some decision tree with $n!$ leaves
 - So no algorithm can have worst-case running time better than the height of a tree with $n!$ leaves

- Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm’s decision tree
Optional: Where are we

• **Proven**: No comparison sort can have worst-case running time better than the height of a binary tree with $n!$ leaves
 – A comparison sort could be worse than this height, but it cannot be better

• **Now**: a binary tree with $n!$ leaves has height $\Omega(n \log n)$
 – Height could be more, but cannot be less
 – Factorial function grows very quickly

• **Conclusion**: Comparison sorting is $\Omega (n \log n)$
 – An amazing computer-science result: proves all the clever programming in the world cannot comparison-sort in linear time
Optional: Height lower bound

- The height of a binary tree with L leaves is at least $\log_2 L$.
- So the height of our decision tree, h:

$$h \geq \log_2 (n!)$$

$$= \log_2 (n*(n-1)*(n-2)\ldots(2)(1))$$

$$= \log_2 n + \log_2 (n-1) + \ldots + \log_2 1$$

$$\geq \log_2 n + \log_2 (n-1) + \ldots + \log_2 (n/2)$$

$$\geq \log_2 (n/2) + \log_2 (n/2) + \ldots + \log_2 (n/2)$$

$$= (n/2)\log_2 (n/2)$$

$$= (n/2)(\log_2 n - \log_2 2)$$

$$= (1/2)n\log_2 n - (1/2)n$$

"=“ $\Omega (n \log n)$
The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Simple algorithms: \(O(n^2) \)
- Insertion sort
- Selection sort
- Shell sort

Fancier algorithms: \(O(n \log n) \)
- Heap sort
- Merge sort
- Quick sort (avg)

Comparison lower bound: \(\Omega(n \log n) \)

Specialized algorithms: \(O(n) \)
- Bucket sort
- Radix sort

Handling huge data sets

How???
- Change the model – assume more than “compare(a,b)”
BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range):
 - Create an array of size K
 - Put each element in its proper **bucket (a.k.a. bin)**
 - *If* data is only integers, no need to store more than a **count** of how times that bucket has been used
- Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Example:
- K=5
- input: (5,1,3,4,3,2,1,1,5,4,5)
- output: 1,1,1,1,2,3,3,4,4,5,5,5
Analyzing Bucket Sort

• **Overall**: $O(n+K)$
 - Linear in n, but also linear in K
 - $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort

• Good when K is smaller (or not much larger) than n
 - We don’t spend time doing comparisons of duplicates

• Bad when K is much larger than n
 - Wasted space; wasted time during linear $O(K)$ pass

• For data in addition to integer keys, use list at each bucket
Bucket Sort with Data

- Most real lists aren’t just keys; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, insert in $O(1)$ (at beginning, or keep pointer to last element)

<table>
<thead>
<tr>
<th>count array</th>
<th>Rocky V</th>
<th>Harry Potter</th>
<th>Casablanca</th>
<th>Star Wars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Example**: Movie ratings; scale 1-5; 1=bad, 5=excellent

 Input=

 5: Casablanca
 3: Harry Potter movies
 5: Star Wars Original Trilogy
 1: Rocky V

- Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
- Easy to keep ‘stable’; Casablanca still before Star Wars
Radix sort

- Radix = “the base of a number system”
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128

- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with least significant digit
 - Keeping sort stable
 - Do one pass per digit
 - Invariant: After k passes (digits), the last k digits are sorted
Example

Radix = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>721</td>
<td></td>
<td>3</td>
<td>143</td>
<td></td>
<td></td>
<td>537</td>
<td>478</td>
<td>9</td>
</tr>
</tbody>
</table>

Input:
- 478
- 537
- 9
- 721
- 3
- 38
- 143
- 67

First pass:
- bucket sort by ones digit

Order now:
- 721
- 3
- 143
- 537
- 67
- 478
- 38
- 9
Example

Radix = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>721</td>
<td></td>
<td>3</td>
<td>143</td>
<td></td>
<td></td>
<td>537</td>
<td>67</td>
<td>478</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td>478</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order was: \(721, 3, 143, 537, 67, 478, 38, 9\)

Second pass:

stable bucket sort by tens digit

Order now: \(3, 9, 721, 537, 38, 143, 67, 478\)
Example

Radix = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>121</td>
<td>537</td>
<td>143</td>
<td>67</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order was:

- 3
- 9
- 721
- 537
- 38
- 143
- 67
- 478

Order now:

- 3
- 9
- 38
- 67
- 143
- 478
- 537
- 721

Third pass:

- **stable** bucket sort by 100s digit
Analysis

Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P

Work per pass is 1 bucket sort: $O(B+n)$

Total work is $O(P(B+n))$

Compared to comparison sorts, sometimes a win, but often not
 - Example: Strings of English letters up to length 15
 • Run-time proportional to: $15*(52 + n)$
 • This is less than $n \log n$ only if $n > 33,000$
 • Of course, cross-over point depends on constant factors of the implementations
 - And radix sort can have poor locality properties
Sorting massive data

- Need sorting algorithms that minimize disk access time:
 - Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses.
 - Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access.

- Mergesort is the basis of massive sorting.

- Mergesort can leverage multiple disks.
Last Slide on Sorting

• Simple $O(n^2)$ sorts can be fastest for small n
 – Selection sort, Insertion sort (latter linear for mostly-sorted)
 – Good for “below a cut-off” to help divide-and-conquer sorts

• $O(n \log n)$ sorts
 – Heap sort, in-place but not stable nor parallelizable
 – Merge sort, not in place but stable and works as external sort
 – Quick sort, in place but not stable and $O(n^2)$ in worst-case
 • Often fastest, but depends on costs of comparisons/copies

• $\Omega(n \log n)$ is worst-case and average lower-bound for sorting by comparisons

• Non-comparison sorts
 – Bucket sort good for small number of possible key values
 – Radix sort uses fewer buckets and more phases

• Best way to sort? It depends!