CSE373: Data Structures & Algorithms
Lecture 4: Dictionaries; Binary Search Trees

Kevin Quinn
Fall 2015
Where we are

Studying the absolutely essential ADTs of computer science and classic data structures for implementing them

ADTs so far:

1. Stack: \texttt{push}, \texttt{pop}, \texttt{isEmpty}, ...
2. Queue: \texttt{enqueue}, \texttt{dequeue}, \texttt{isEmpty}, ...

Next:

3. Dictionary (also known as a Map): associate keys with values
 - Extremely common
The Dictionary (a.k.a. Map) ADT

- **Data:**
 - set of \((key, value)\) pairs
 - keys must be comparable

- **Operations:**
 - `insert(key, value)`
 - `find(key)`
 - `delete(key)`
 - ...

Will tend to emphasize the keys; don’t forget about the stored values

- `cs373` → **Data Structures**
- `dog` → **Labrador**
- `kanye` → **Kanye West**
Common Uses of Dictionaries

Counting frequency of words in a book: $\text{Map<String, Integer>}$
Storing a contact list: $\text{Map<String, String>}$
Making a Facebook-esque graph of friends: $\text{Map<Person, Set<Person>>}$

What happens when the keys aren’t all the same type?

What about the values?
Comparison: The Set ADT

The Set ADT is like a Dictionary without any values
 – A key is present or not (no duplicates)

For find, insert, delete, there is little difference
 – In dictionary, values are “just along for the ride”
 – So same data-structure ideas work for dictionaries and sets

But if your Set ADT has other important operations this may not hold
 – union, intersection, is_subset
 – Notice these are binary operators on sets

binary operation: a rule for combining two objects of a given type, to obtain another object of that type
Dictionary data structures

There are many good data structures for (large) dictionaries

1. AVL trees (Friday’s class)
 – Binary search trees with guaranteed balancing

2. B-Trees
 – Also always balanced, but different and shallower
 – B ≠ Binary; B-Trees generally have large branching factor

3. Hashtables
 – Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)

But first some applications and less efficient implementations…
A Modest Few Uses

Any time you want to store information according to some key and be able to retrieve it efficiently. Lots of programs do that!

- Search: inverted indexes, phone directories, …
- Networks: router tables
- Operating systems: page tables
- Compilers: symbol tables
- Databases: dictionaries with other nice properties
- Biology: genome maps
- …
Simple implementations

For dictionary with n key/value pairs

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>find</th>
<th>delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted linked-list</td>
<td>$O(1)^*$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Unsorted array</td>
<td>$O(1)^*$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted linked list</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

* Unless we need to check for duplicates

We’ll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced
Lazy Deletion

A general technique for making delete as fast as find:
- Instead of actually removing the item just mark it deleted

Plusses:
- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses:
- Extra space for the “is-it-deleted” flag
- Data structure full of deleted nodes wastes space
- find $O(\log m)$ time where m is data-structure size (okay)
- May complicate other operations
Tree Terminology

- **node**: an object containing a data value and left/right children
 - **root**: topmost node of a tree
 - **leaf**: a node that has no children
 - **branch**: any internal node (non-root)
 - **parent**: a node that refers to this one
 - **child**: a node that this node refers to
 - **sibling**: a node with a common

- **subtree**: the smaller tree of nodes on the left or right of the current node
- **height**: length of the longest path from the root to any node (count edges)
- **level** or **depth**: length of the path from a root to a given node
Some tree terms (mostly review)

- There are many kinds of trees
 - Every binary tree is a tree
 - Every list is kind of a tree (think of “next” as the one child)

- There are many kinds of binary trees
 - Every binary search tree is a binary tree
 - Later: A binary heap is a different kind of binary tree

- A tree can be balanced or not
 - A balanced tree with \(n \) nodes has a height of \(O(\log n) \)
 - Different tree data structures have different “balance conditions” to achieve this
Kinds of trees

Certain terms define trees with specific structure

- **Binary tree**: Each node has at most 2 children (branching factor 2)
- **n-ary tree**: Each node has at most \(n \) children (branching factor \(n \))
- **Perfect tree**: Each row completely full
- **Complete tree**: Each row completely full except maybe the bottom row, which is filled from left to right

What is the height of a **perfect binary** tree with \(n \) nodes? A **complete binary** tree?
Tree terms (review?)

- root(tree)
- leaves(tree)
- children(node)
- parent(node)
- siblings(node)
- ancestors(node)
- descendents(node)
- subtree(node)

- depth(node)
- height(tree)
- degree(node)
- branching factor(tree)
Binary Trees

- Binary tree is empty or
 - A root *(with data)*
 - A left subtree *(may be empty)*
 - A right subtree *(may be empty)*

- Representation:

 ![Diagram of a binary tree]

- For a dictionary, data will include a key and a value
Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
- max # of leaves:

- max # of nodes:

- min # of leaves:

- min # of nodes:
Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:

- max # of leaves: 2^h
- max # of nodes: $2^{(h + 1)} - 1$
- min # of leaves: 1
- min # of nodes: $h + 1$

For n nodes, we cannot do better than $O(\log n)$ height, and we want to avoid $O(n)$ height
Calculating height

What is the height of a tree with root `root`?

```java
int treeHeight(Node root) {
    ???
}
```
Calculating height

What is the height of a tree with root \(\text{root} \)?

```java
int treeHeight(Node root) {
    if (root == null)
        return -1;
    return 1 + max(treeHeight(root.left),
                    treeHeight(root.right));
}
```

Running time for tree with \(n \) nodes: \(O(n) \) – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes; much easier to use recursion’s call stack
Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- **Pre-order:** root, left subtree, right subtree
- **In-order:** left subtree, root, right subtree
- **Post-order:** left subtree, right subtree, root

(an expression tree)
Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- **Pre-order:** root, left subtree, right subtree
 $+ * 2 4 5$
- **In-order:** left subtree, root, right subtree
 $2 * 4 + 5$
- **Post-order:** left subtree, right subtree, root
 $2 4 * 5 +$

(an expression tree)
void inOrderTraversal(Node t) {
 if (t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

Sometimes order doesn’t matter
• Example: sum all elements

Sometimes order matters
• Example: print tree with parent above indented children (pre-order)
• Example: evaluate an expression tree (post-order)
Binary Search Tree

- **Structure property (“binary”)**
 - Each node has ≤ 2 children
 - Result: keeps operations simple

- **Order property**
 - All keys in left subtree smaller than node’s key
 - All keys in right subtree larger than node’s key
 - Result: easy to find any given key
Are these BSTs?
Are these BSTs?
Find in BST, Recursive

```java
int find(Key key, Node root) {
    if (root == null) {
        return null;
    }
    if (key < root.key) {
        return find(key, root.left);
    }
    if (key > root.key) {
        return find(key, root.right);
    }
    return root.data;
}
```
int find(Key key, Node root) {
 while (root != null && root.key != key) {
 if (key < root.key)
 root = root.left;
 else if (key > root.key)
 root = root.right;
 }
 if (root == null)
 return null;
 return root.data;
}
Other “Finding” Operations

- Find *minimum* node
 - “the Ralph Nader algorithm”
- Find *maximum* node
 - “the Zoolander algorithm”
- Find *predecessor* of a non-leaf
- Find *successor* of a non-leaf
- Find *predecessor* of a leaf
- Find *successor* of a leaf
Insert in BST

New insertions happen only at leaves – easy!

insert(13)
insert(8)
insert(31)
Deletion in BST

Why might deletion be harder than insertion?
Deletion

- Removing an item disrupts the tree structure

- Basic idea: find the node to be removed, then “fix” the tree so that it is still a binary search tree

- Three cases:
 - Node has no children (leaf)
 - Node has one child
 - Node has two children
Deletion – The Leaf Case

delete(17)
Deletion – The One Child Case

delete(15)
Deletion – The Two Child Case

What can we replace 5 with?

delete(5)
Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:
- successor from right subtree: $\text{findMin}(node.\text{right})$
- predecessor from left subtree: $\text{findMax}(node.\text{left})$
 - These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor
- Leaf or one child case – easy cases of delete!
Lazy Deletion

• Lazy deletion can work well for a BST
 – Simpler
 – Can do “real deletions” later as a batch
 – Some inserts can just “undelete” a tree node

• But
 – Can waste space and slow down find operations
 – Make some operations more complicated:
 • How would you change \texttt{findMin} and \texttt{findMax}?
BuildTree for BST

- Let’s consider `buildTree`
 - Insert all, starting from an empty tree

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
 - If inserted in given order, what is the tree?
 - What big-O runtime for this kind of sorted input?
 - Is inserting in the reverse order any better?

\[O(n^2) \]

Not a happy place
BuildTree for BST

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

• What we if could somehow re-arrange them
 – median first, then left median, right median, etc.
 – 5, 3, 7, 2, 1, 4, 8, 6, 9

 – What tree does that give us?

 – What big-O runtime?

 \[O(n \log n), \text{ definitely better} \]
Unbalanced BST

- Balancing a tree at build time is insufficient, as sequences of operations can eventually transform that carefully balanced tree into the dreaded list

- At that point, everything is $O(n)$ and nobody is happy
 - find
 - insert
 - delete
Balanced BST

Observation

- BST: the shallower the better!
- For a BST with n nodes inserted in arbitrary order
 - Average height is $O(\log n)$ – see text for proof
 - Worst case height is $O(n)$
- Simple cases, such as inserting in key order, lead to the worst-case scenario

Solution: Require a **Balance Condition** that

1. Ensures depth is always $O(\log n)$ – strong enough!
2. Is efficient to maintain – not too strong!
Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes

 Too weak!
 Height mismatch example:

2. Left and right subtrees of the root have equal height

 Too weak!
 Double chain example:
Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes

 Too strong!

 Only perfect trees (2^n – 1 nodes)

4. Left and right subtrees of every node have equal *height*

 Too strong!

 Only perfect trees (2^n – 1 nodes)
The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: \(\text{balance}(\text{node}) = \text{height}(\text{node}.\text{left}) - \text{height}(\text{node}.\text{right}) \)

AVL property: for every node \(x \), \(-1 \leq \text{balance}(x) \leq 1\)

• Ensures small depth
 – Will prove this by showing that an AVL tree of height \(h \) must have a number of nodes exponential in \(h \)

• Efficient to maintain
 – Using single and double rotations