CSE373: Data Structures and Algorithms

Lecture 2: Math Review; Algorithm Analysis

Kevin Quinn
Fall 2015
Today

• Finish discussing stacks and queues

• Review math essential to algorithm analysis
 – Proof by induction
 – Powers of 2
 – Binary numbers
 – Exponents and logarithms

• Begin analyzing algorithms
 – Using asymptotic analysis (continue next time)
Mathematical induction

Suppose $P(n)$ is some predicate (mentioning integer n)
 - Example: $P(n) \geq n/2 + 1$

To prove $P(n)$ for all integers $n \geq n_0$, it suffices to prove:
1. $P(n_0)$, called the basis or **base case**
2. If $P(k)$ then $P(k+1)$, called the “induction step” or **inductive case**

Why we will care:
To show an algorithm is correct or has a certain running time, *no matter how big a data structure or input value is*
(Our “n” will be the data structure or input size.)
Example

\[P(n) = \text{“the sum of the first } n \text{ powers of 2 (starting at 0) is } 2^n - 1 \text{”} \]

Theorem: \(P(n) \) holds for all \(n \geq 1 \)

Proof: By induction on \(n \)

- **Base case:** \(n = 1 \):

 Sum of first power of 2 is \(2^0 \), which equals 1.

 For \(n = 1 \): \(2^n - 1 = 1 \).

- **Inductive case:**

 - **Assumption:** the sum of the first \(k \) powers of 2 is \(2^k - 1 \)

 - Show the sum of the first \((k + 1) \) powers of 2 is \(2^{k+1} - 1 \) using our assumption:

 Therefore, the sum of of the first \((k + 1) \) powers of 2 is:

 \[
 \begin{align*}
 \text{Assumption} & : \quad 2^k - 1 \\
 \text{ } & : \quad 2^{(k+1)} - 1 \\
 \text{k+1’th term} & : \quad 2^k \\
 \text{ } & : \quad 2^{k+1} - 1
 \end{align*}
 \]
Powers of 2

- A bit is 0 or 1 (just two different “letters” or “symbols”)
- A sequence of n bits can represent 2^n distinct things
 - For example, the numbers 0 through 2^n-1
- 2^{10} is 1024 (“about a thousand”, kilo in CSE speak)
- 2^{20} is “about a million”, mega in CSE speak
- 2^{30} is “about a billion”, giga in CSE speak

Java: an `int` is 32 bits and signed, so “max int” is “about 2 billion”

a `long` is 64 bits and signed, so “max long” is $2^{63}-1$
Therefore...

Could give a unique id to...

• Every person in the U.S. with 29 bits
• Every person in the world with 33 bits
• Every person to have ever lived with 38 bits (estimate)
• Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated... how long would it take to crack?
Logarithms and Exponents

- Since so much is binary \log in CS almost always means \log_2
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, $\log_2 1,000,000 = \text{“a little under 20”}$
- Just as exponents grow very quickly, logarithms grow very slowly
Logarithms and Exponents

• Since so much is binary \log in CS almost always means \log_2
• Definition: $\log_2 x = y$ if $x = 2^y$
• So, $\log_2 1,000,000 = \text{“a little under 20”}$
• Just as exponents grow very quickly, logarithms grow very slowly
Logarithms and Exponents

- Since so much is binary \log in CS almost always means \log_2
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, $\log_2 1,000,000 = “a little under 20”$
- Just as exponents grow very quickly, logarithms grow very slowly
Logarithms and Exponents

- Since so much is binary \log in CS almost always means \log_2
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, $\log_2 1,000,000 = \text{“a little under 20”}$
- Just as exponents grow very quickly, logarithms grow very slowly
Properties of logarithms

- \(\log(A \times B) = \log(A) + \log(B) \)
 - So \(\log(N^k) = k \log(N) \)

- \(\log(A/B) = \log(A) - \log(B) \)

- \(\log \log x \) is written \(\log(\log(x)) \)

- \(\log(x)\log(x) \) is written \(\log^2x \)
 - It is greater than \(\log(x) \) for all \(x > 2 \)
 - It is not the same as \(\log(\log(x)) \)
Log base doesn’t matter much!

“Any base B log is equivalent to base 2 log within a constant factor”

– And we are about to stop worrying about constant factors!
– In particular, $\log_2(x) \approx 3.22\log_{10}(x)$
– In general,

$$\log_B(x) = \log_A(x) / \log_A(B)$$
Floor and ceiling

\[\lfloor X \rfloor \quad \text{Floor function: the largest integer } \leq X \]

\[\lfloor 2.7 \rfloor = 2 \quad \lfloor -2.7 \rfloor = -3 \quad \lfloor 2 \rfloor = 2 \]

\[\lceil X \rceil \quad \text{Ceiling function: the smallest integer } \geq X \]

\[\lceil 2.3 \rceil = 3 \quad \lceil -2.3 \rceil = -2 \quad \lceil 2 \rceil = 2 \]
Floor and ceiling properties

1. $X - 1 < \lfloor X \rfloor \leq X$
2. $X \leq \lfloor X \rfloor < X + 1$
3. $\lfloor n/2 \rfloor + \lfloor n/2 \rfloor = n$ if n is an integer
Algorithm Analysis

As the “size” of an algorithm’s input grows (integer, length of array, size of queue, etc.), we analyze:

- How much longer does the algorithm take? **(time)**
- How much more memory does the algorithm need? **(space)**

Because the curves we saw are so different, often care about only which curve we resemble

Separate issue: **Algorithm correctness** – does it produce the right answer for all input?

- Usually more important

```java
//Sorts the given input array of 'ints'
public int[] miracleSort(int[] input){
    /*for (int i=0; i<10000; i++) {
        pray
    }*/
    return input;
}
```
Example

• What does this pseudocode return?

x := 0;
 for i=1 to N do
 for j=1 to i do
 x := x + 3;
 return x;

• Correctness: For any N ≥ 0, it returns...
Example

• What does this pseudocode return?

  ```
  x := 0;
  for i=1 to N do
    for j=1 to i do
      x := x + 3;
  return x;
  ```

• Correctness: For any $N \geq 0$, it returns $3N(N+1)/2$

• Proof: By induction on n

 – $P(n) =$ after outer for-loop executes n times, $P(n)$ holds: $3n(n+1)/2$

 – **Base case:** $n=0$, returns 0

 – **Inductive case:** Assume $P(k)$ holds for $3k(k+1)/2$ after k iterations. Next iteration adds $3(k+1)$. Show that it hold for $(k + 1)$:

    ```
    = 3k(k+1)/2 + 3(k+1)
    = (3k(k+1) + 6(k+1))/2
    = (k+1)(3k+6)/2
    = 3(k+1)(k+2)/2
    ```
Example

• How long does this pseudocode run?

 \[
 x := 0; \\
 \text{for } i=1 \text{ to } N \text{ do} \\
 \quad \text{for } j=1 \text{ to } i \text{ do} \\
 \quad \quad x := x + 3; \\
 \text{return } x;
 \]

• Running time: For any \(N \geq 0 \),

 – Assignments, additions, returns take “1 unit time”
 – Loops take the sum of the time for their iterations

 \[
 \text{Cost of assigning } x \text{ and returning } x
 \]

• So: \(2 + 2^* (\text{number of times inner loop runs}) \)

 – And how many times is that...
Example

• How long does this pseudocode run?

```plaintext
x := 0;
for i=1 to N do
  for j=1 to i do
    x := x + 3;
return x;
```

• The total number of loop iterations is $N*(N+1)/2$
 – This is a very common loop structure, worth memorizing
 – Proof is by induction on N, known for centuries

 – This is proportional to N^2, and we say $O(N^2)$, “big-Oh of”
 • For large enough N, the N and constant terms are irrelevant, as are the first assignment and return
 • See plot... $N*(N+1)/2$ vs. just $N^2/2$
Lower-order terms don’t matter
Geometric interpretation

\[\sum_{i=1}^{N} i = \frac{N^2}{2} + \frac{N}{2} \]

for \(i = 1 \) to \(N \) do
 for \(j = 1 \) to \(i \) do
 // small work

- Area of square: \(N^2 \)
- Area of lower triangle of square: \(\frac{N^2}{2} \)
- Extra area from squares crossing the diagonal: \(\frac{N}{2} \)
- As \(N \) grows, fraction of “extra area” compared to lower triangle goes to zero (becomes insignificant)
Big-O: Common Names

\(O(1) \) constant (same as \(O(k) \) for constant \(k \))
\(O(\log n) \) logarithmic
\(O(n) \) linear
\(O(n \log n) \) “\(n \log n \)”
\(O(n^2) \) quadratic
\(O(n^3) \) cubic
\(O(n^k) \) polynomial (where \(k \) is any constant \(> 1 \))
\(O(k^n) \) exponential (where \(k \) is any constant \(> 1 \))

exponential does not mean “grows really fast”, it means “grows at rate proportional to \(k^n \) for some \(k > 1 \)”!

- A savings account accrues interest exponentially\((k=1.01?)\)
- If you don’t know \(k \), you probably don’t know it’s exponential