
Name:

CSE373 Winter 2014, Second Midterm Examination
February 26, 2014

Please do not turn the page until the bell rings.

Rules:

• The exam is closed-book, closed-note, closed calculator, closed electronics.

• Please stop promptly at 3:20.

• There are 106 points total, distributed unevenly among 7 questions (many with multiple parts):

Question Max Earned

1 12

2 13

3 10

4 27

5 16

6 14

7 14

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But clearly
circle your final answer.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
problems.

• If you have questions, ask.

• Relax. You are here to learn.

Name:

1. (12 points) The following uptrees represent sets in an instance of the union-find ADT. They can be
stored in a n-element array where each entry stores the parent of the node. If a node is a root (i.e. has
no parent), the array stores the negative size of the uptree.

5

9

3

1

117 2

84 10

126

(a) Fill out the array below such that it corresponds with the uptrees pictured above.

1 2 3 4 5 6 7 8 9 10 11 12

(b) Show the result of performing union(11,3) using union-by-size and find(6) using path compres-
sion by doing both of the following:

• Redraw below any uptrees (from above) that change as a result.

• Update the array representation (from part (a)) as appropriate by drawing a single slash
(“/”) through any numbers that change and writing the new number next to it.

(c) For an instance of the union-find ADT initially containing n elements each in their own set, how
many union operations must occur before all n elements are in the same set?

(d) If union-by-size and path compression are not used, what is the asymptotic worse-case running
time for a find operation if there are n elements in the union-find?

Name:

2. (13 points)

(a) Fill in the contents of the hash table below after inserting the items shown. To insert the item k,
use the hash function

k mod TableSize

and resolve collisions with quadratic probing.

Insert: 13, 44, 103, 113, 2

1 2 3 4 5 6 7 8 90

(b) We now consider looking up some items that are not in the table after doing the insertions above.
For each, give the list of table locations that are looked at in order before determining that the
item is not present. Include all the table locations examined, whether or not they contain an
item. Note: these items are only being looked up, not inserted.

i. 57

ii. 42

iii. 11

(c) Give the load factor for the hash table.

Name:

3. (10 points) Don’t miss part (b).

The Java code below provides an adjacency-matrix representation for a weighted directed graph where
the n nodes correspond with the numbers 0, 1, ... n− 1. The matrix locations store the edge weights.
If the edge does not exist, a null value is stored instead. Remember that a 2D array in Java is simply
an array of arrays. That is, every element of the outer array is itself just an array.

public class Graph {

// Adjacency matrix representation with n nodes where

// the 2D array is n by n.

// Weight of the edge from node i to node j is in array index [i][j].

// If the edge from node i to node j does not exist matrix[i][j] == null.

private Double[][] matrix;

public Graph() {

// ... constructor not shown; assume it is correct

}

private void printCount(int node, int count) {

System.out.println(node + ": " + count);

}

public void displayInCount(double threshold) {

// YOUR CODE GOES HERE

}

}

(a) You will implement the method displayInCount(double threshold) to print each node followed
by the number of incoming edges to that node with a weigh greater than threshold. The line
should have the node followed by a colon and the count, so we might see output like 4: 7. No line
should be printed twice. You should need somewhere around 9 lines of code. – not necessarily
exactly 9, but to give you a sense if you are writing too much or far too little.

(b) Give tight asymptotic worst-case running-time bounds for your code in part (a) in terms of |V |,
the number of nodes.

Name:

4. (27 points) These three questions about graphs all have the same subparts. Note that for parts (iii),
(iv), and (v), your answer should be in terms of an arbitrary k, not assuming k = 4.

(a) Suppose a directed graph has k nodes, where there are two “special” nodes. One has an edge
from itself to every non-special node and the other has an edge from every non-special node to
itself. There are no other edges at all in the graph.

i. Draw the graph (using circles and arrows) assuming k = 4.

ii. Draw an adjacency list representation of the graph assuming k = 4.

iii. In terms of k, exactly how many edges are in the graph?

iv. Is this graph dense or sparse?

v. In terms of k (if k is relevant), exactly how many correct results for topological sort that does
this graph have?

(b) Suppose a directed graph has k nodes, where each node corresponds to a number (1, 2, ..., k) and
there is an edge from node i to node j if and only if i mod 2 6= j mod 2

i. Draw the graph (using circles and arrows) assuming k = 4.

ii. Draw an adjacency list representation of the graph assuming k = 4.

iii. In terms of k, exactly how many edges are in the graph assuming k is even?

iv. Is this graph dense or sparse?

v. In terms of k (if k is relevant), exactly how many correct results for topological sort that does
this graph have?

(c) Suppose a directed graph has k nodes, where each node corresponds to a number (1, 2, ..., k) and
there is an edge from node i to node j if and only if j = i + 1.

i. Draw the graph (using circles and arrows) assuming k = 4.

ii. Draw an adjacency list representation of the graph assuming k = 4.

iii. In terms of k, exactly how many edges are in the graph?

iv. Is this graph dense or sparse?

v. In terms of k (if k is relevant), exactly how many correct results for topological sort that does
this graph have?

Name:

5. (16 points) Consider the following directed, weighted graph:

A B

C
F

D H
E

G

4
1

37

2

0
1

2 5
1

10

3

14

(a) Step through Dijkstra’s algorithm to calculate the single-source shortest paths from A to every
other vertex. Show your steps in the table below. Cross out old values and write in new ones,
from left to right within each cell, as the algorithm proceeds. Also list the vertices in the order
which you marked them known. Finally, indicate the lowest-cast path from node A to node G.

Known vertices (in order marked known):

Vertex Known Distance Path

A

B

C

D

E

F

G

H

Lowest-cost path from A to G:

(b) Given the graph above, list one possible order that vertices in the graph above would be processed
if a breadth first traversal is done starting at A.

Name:

6. (14 points)

(a) Draw a weighted undirected graph with exactly 3 nodes that has exactly 0 minimum spanning
trees.

(b) Draw a weighted undirected graph with exactly 3 nodes that has exactly 1 minimum spanning
tree.

(c) Draw a weighted undirected graph with exactly 3 nodes that has exactly 2 minimum spanning
trees.

(d) Draw a weighted undirected graph with exactly 3 nodes that has exactly 3 minimum spanning
trees.

(e) Can a weighted undirected graph with 3 nodes have more than 3 minimum spanning trees? Why
or why not?

Name:

7. (14 points)

(a) Under what circumstances can you use perfect hashing?

(b) List what (if anything) is required in order for the following collision resolution methods to be
guaranteed of finding a spot in the table to insert a new value (i.e. a value not previously in the
table). Assume no rehashing (i.e. table resizing) occurs.

• Separate chaining

• Linear probing

• Quadratic probing

(c) Which collision resolution methods require lazy deletion?

(d) Double hashing is a collision resolution method that avoids the primary and secondary clustering
caused by linear and quadratic probing. How does it accomplish this?

Name:

(e) Briefly explain why we can claim an array-based queue implementation has amortized O(1) run-
ning time for enqueue when any single enqueue operation can have O(n) running time in the
worst case.

(f) We have an array-based stack implementation that takes O(n) time to perform a push operation
when the array is not full. When the array is full, push takes O(n3) time (which includes doubling
the size of the array). What is the amortized worst-case running time of push for our stack?

Name:

An extra page in case you find it useful

