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Midterm 

•  On Wednesday, in class 
•  Closed book 
•  Closed note 
•  Closed electronic devices 
•  Closed classmate 
•  Covers everything up through priority queues and binary heaps 

–  does not include AVL tree delete 
–  does not include proof AVL tree has logarithmic height 
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Review 

•  Priority Queue ADT: insert comparable object, deleteMin 
•  Binary heap data structure: Complete binary tree where each 

node has priority value greater than its parent 
•  O(height-of-tree)=O(log n) insert and deleteMin operations 

–  insert:        put at new last position in tree and percolate-up 
–  deleteMin:  remove root, put last element at root and   

                     percolate-down 
•  But: tracking the “last position” is painful and we can do better 
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Array Representation of Binary Trees 
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From node i: 
 
left child: i*2 
right child: i*2+1 
parent: i/2 
 
(wasting index 0 is 
convenient for the 
index arithmetic) 
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implicit (array) implementation: 
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Pseudocode: insert 
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void insert(int val) { 
 if(size==arr.length-1) 

    resize();   
  size++; 
  i=percolateUp(size,val); 
  arr[i] = val; 
} 

int percolateUp(int hole,  
                int val) { 
  while(hole > 1 && 
        val < arr[hole/2]) 
    arr[hole] = arr[hole/2]; 
    hole = hole / 2; 
  } 
  return hole; 
} 
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This pseudocode uses ints.  In real use, 
you will have data nodes with priorities. 



Pseudocode: deleteMin 
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int deleteMin() { 
  if(isEmpty()) throw… 
  ans = arr[1]; 
  hole = percolateDown 
          (1,arr[size]); 
  arr[hole] = arr[size]; 
  size--; 
  return ans; 
} 

int percolateDown(int hole, 
                  int val) { 
 while(2*hole <= size) { 
  left  = 2*hole;  
  right = left + 1; 
  if(right > size || 
     arr[left] < arr[right]) 
    target = left; 
  else 
    target = right; 
  if(arr[target] < val) { 
    arr[hole] = arr[target]; 
    hole = target; 
  } else 
      break; 
 } 
 return hole; 
} 
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This pseudocode uses ints.  In real use, 
you will have data nodes with priorities. 



Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 

Winter 2014 7 CSE373: Data Structures & Algorithms 

0 1 2 3 4 5 6 7 

  



Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Example 

1.  insert: 16, 32, 4, 67, 105, 43, 2 
2.  deleteMin 
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Other operations 

•  decreaseKey: given pointer to object in priority queue (e.g., its 
array index), lower its priority value by p 
–  Change priority and percolate up 

•  increaseKey: given pointer to object in priority queue (e.g., its 
array index), raise its priority value by p 
–  Change priority and percolate down 

•  remove: given pointer to object in priority queue (e.g., its array 
index), remove it from the queue 

–  decreaseKey with p = ∞, then deleteMin 
 

Running time for all these operations? 
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Build Heap 

•  Suppose you have n items to put in a new (empty) priority queue 
–  Call this operation buildHeap  

•  n inserts works 
–  Only choice if ADT doesn’t provide buildHeap explicitly 
–  O(n log n) 

•  Why would an ADT provide this unnecessary operation? 
–  Convenience 
–  Efficiency: an O(n) algorithm called Floyd’s Method 
–  Common issue in ADT design: how many specialized 

operations 
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Floyd’s Method 

1.  Use n items to make any complete tree you want 
–  That is, put them in array indices 1,…,n 

2.  Treat it as a heap and fix the heap-order property 
–  Bottom-up: leaves are already in heap order, work up 

toward the root one level at a time 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Example 

•  In tree form for readability 
–  Purple for node not less than 

descendants  
•  heap-order problem 

–  Notice no leaves are purple 
–  Check/fix each non-leaf 

bottom-up (6 steps here) 
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Example 
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Step 1 

•  Happens to already be less than children (er, child) 



Example 
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Step 2 

•  Percolate down (notice that moves 1 up) 
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Example 
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Step 3 

•  Another nothing-to-do step 
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Example 
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Step 4 

•  Percolate down as necessary (steps 4a and 4b) 
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Example 
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Step 5 
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Example 
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But is it right? 

•  “Seems to work” 
–  Let’s prove it restores the heap property (correctness) 
–  Then let’s prove its running time (efficiency) 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Correctness 

Loop Invariant: For all j>i, arr[j] is less than its children 
•  True initially: If j > size/2, then j is  a leaf 

–  Otherwise its left child would be at position > size 
•  True after one more iteration: loop body and percolateDown 

make arr[i] less than children without breaking the property 
for any descendants 

So after the loop finishes, all nodes are less than their children 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Efficiency 

Easy argument:  buildHeap is O(n log n) where n is size 
•  size/2 loop iterations 
•  Each iteration does one percolateDown, each is O(log n) 

This is correct, but there is a more precise (“tighter”) analysis of 
the algorithm… 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Efficiency 

Better argument:  buildHeap is O(n) where n is size 
•  size/2 total loop iterations: O(n) 
•  1/2 the loop iterations percolate at most 1 step 
•  1/4 the loop iterations percolate at most 2 steps 
•  1/8 the loop iterations percolate at most 3 steps 
•  … 
•  ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) < 2  (page 4 of Weiss) 

–  So at most 2(size/2) total percolate steps: O(n)  
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 
   hole = percolateDown(i,val); 

    arr[hole] = val; 
  } 
} 



Lessons from buildHeap 

•  Without buildHeap, our ADT already let clients implement their 
own in  O(n log n) worst case 
–  Worst case is inserting lower priority values later 

•  By providing a specialized operation internal to the data structure 
(with access to the internal data), we can do O(n) worst case 
–  Intuition: Most data is near a leaf, so better to percolate down 

•  Can analyze this algorithm for: 
–  Correctness:  

•  Non-trivial inductive proof using loop invariant 
–  Efficiency: 

•  First analysis easily proved it was O(n log n) 
•  Tighter analysis shows same algorithm is O(n) 
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Other branching factors 
•  d-heaps: have d children instead of 2 

–  Makes heaps shallower, useful for heaps too big for memory 
(or cache) 

•  Homework: Implement a 3-heap 
–  Just have three children instead of 2 
–  Still use an array with all positions from 1…heap-size used 
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 Index Children Indices 
1 2,3,4 
2 5,6,7 
3 8,9,10 
4 11,12,13 
5 14,15,16 
… … 



What we are skipping 

•  merge: given two priority queues, make one priority queue 
–  How might you merge binary heaps: 

•  If one heap is much smaller than the other? 
•  If both are about the same size? 

–  Different pointer-based data structures for priority queues 
support logarithmic time merge operation (impossible with 
binary heaps) 

•  Leftist heaps, skew heaps, binomial queues 
•  Worse constant factors 
•  Trade-offs! 
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Amortized  

•  Recall our plain-old stack implemented as an array that doubles its 
size if it runs out of room 
–  How can we claim push is O(1) time if resizing is O(n) time? 
–  We can’t, but we can claim it’s an O(1) amortized operation 

•  What does amortized mean? 
•  When are amortized bounds good enough? 
•  How can we prove an amortized bound? 

Will just do two simple examples  
–  Text has more sophisticated examples and proof techniques 
–  Idea of how amortized describes average cost is essential 
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Amortized Complexity 

If a sequence of M operations takes O(M  f(n)) time,  
we say the amortized runtime is O(f(n)) 

 

Amortized bound: worst-case guarantee over sequences of operations 
–  Example: If any n operations take O(n), then amortized O(1) 
–  Example: If any n operations take O(n3), then amortized O(n2) 

 
•  The worst case time per operation can be larger than f(n) 

–  As long as the worst case is always “rare enough” in any 
sequence of operations 

Amortized guarantee ensures the average time per operation for any 
sequence is O(f(n)) 
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“Building Up Credit” 

•  Can think of preceding “cheap” operations as building up “credit” 
that can be used to “pay for” later “expensive” operations 

•  Because any sequence of operations must be under the bound, 
enough “cheap” operations must come first 
–  Else a prefix of the sequence, which is also a sequence, 

would violate the bound 
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Example #1: Resizing stack 

A stack implemented with an array where we double the size of the 
array if it becomes full 

Claim: Any sequence of push/pop/isEmpty is amortized O(1) 
 
Need to show any sequence of M operations takes time O(M) 

–  Recall the non-resizing work is O(M) (i.e., M*O(1)) 
–  The resizing work is proportional to the total number of element 

copies we do for the resizing 
–  So it suffices to show that: 

 After M operations, we have done < 2M total element copies 
    (So average number of copies per operation is bounded by a 

constant) 
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Amount of copying 

After  M operations, we have done  < 2M  total element copies 
 

Let n be the size of the array after M operations 
–  Then we have done a total of: 

 n/2 + n/4 + n/8 + … INITIAL_SIZE < n 
 element copies 

–  Because we must have done at least enough push 
operations to cause resizing up to size n: 

 M ≥ n/2 
–  So 

2M ≥ n > number of element copies 
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Other approaches 

•  If array grows by a constant amount (say 1000),  
 operations are not amortized O(1) 

–  After O(M) operations, you may have done Θ(M2) copies 

•  If array shrinks when 1/2 empty,  
 operations are not amortized O(1) 

–  Terrible case: pop once and shrink, push once and grow, pop 
once and shrink, … 

•  If array shrinks when 3/4 empty,  
 it is amortized O(1) 

–  Proof is more complicated, but basic idea remains: by the time 
an expensive operation occurs, many cheap ones occurred 
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Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 
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class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 
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B 
A 

in out 

enqueue: A, B, C 



Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 
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class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 
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Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 
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class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 
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Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 
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class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 
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Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 
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class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 
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Correctness and usefulness 

•  If x is enqueued before y, then x will be popped from in later 
than y and therefore popped from out sooner than y 
–  So it is a queue 

•  Example:  
–  Wouldn’t it be nice to have a queue of t-shirts to wear 

instead of a stack (like in your dresser)? 
–  So have two stacks 

•  in: stack of t-shirts go after you wash them 
•  out: stack of t-shirts to wear 
•  if out is empty, reverse in into out 
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Analysis 

•  dequeue is not O(1) worst-case because out might be empty 
and in may have lots of items 

•  But if the stack operations are (amortized) O(1), then any 
sequence of queue operations is amortized O(1) 

–  The total amount of work done per element is 1 push onto 
in, 1 pop off of in, 1 push onto out, 1 pop off of out 

–  When you reverse n elements, there were n earlier O(1) 
enqueue operations to average with 

Winter 2014 44 CSE373: Data Structures & Algorithms 



Amortized useful? 

•  When the average per operation is all we care about (i.e., sum 
over all operations), amortized is perfectly fine 
–  This is the usual situation 

•  If we need every operation to finish quickly (e.g., in a web 
server), amortized bounds may be too weak 

•  While amortized analysis is about averages, we are averaging 
cost-per-operation on worst-case input 
–  Contrast: Average-case analysis is about averages across 

possible inputs.  Example: if all initial permutations of an 
array are equally likely, then quicksort is O(n log n) on 
average even though on some inputs it is O(n2)) 
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Not always so simple 

•  Proofs for amortized bounds can be much more complicated 

•  Example: Splay trees are dictionaries with amortized O(log n) 
operations 
–  No extra height field like AVL trees 
–  See Chapter 4.5 if curious 

•  For more complicated examples, the proofs need much more 
sophisticated invariants and “potential functions” to describe 
how earlier cheap operations build up “energy” or “money” to 
“pay for” later expensive operations 
–  See Chapter 11 if curious 

•  But complicated proofs have nothing to do with the code! 
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