
CSE373: Data Structures & Algorithms

Lecture 9: Priority Queues

Aaron Bauer
Winter 2014

Midterm

•  On Wednesday, in class
•  Closed book
•  Closed note
•  Closed electronic devices
•  Closed classmate
•  Covers everything up through priority queues and binary heaps

–  does not include AVL tree delete
–  does not include proof AVL tree has logarithmic height

Winter 2014 2 CSE373: Data Structures & Algorithms

Review

•  Priority Queue ADT: insert comparable object, deleteMin
•  Binary heap data structure: Complete binary tree where each

node has priority value greater than its parent
•  O(height-of-tree)=O(log n) insert and deleteMin operations

–  insert: put at new last position in tree and percolate-up
–  deleteMin: remove root, put last element at root and

 percolate-down
•  But: tracking the “last position” is painful and we can do better

Winter 2014 3 CSE373: Data Structures & Algorithms

insert deleteMin

 6 2
 15 23
 12 18
45 3 7 99 60 40

80 20

10

700 50

85

Winter 2014 4

Array Representation of Binary Trees

G E D

C B

A

J K H I

F

L

From node i:

left child: i*2
right child: i*2+1
parent: i/2

(wasting index 0 is
convenient for the
index arithmetic)

7

1

2 3

4 5 6

9 8 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:

CSE373: Data Structures & Algorithms

Pseudocode: insert

Winter 2014 5 CSE373: Data Structures & Algorithms

void insert(int val) {
 if(size==arr.length-1)

 resize();
 size++;
 i=percolateUp(size,val);
 arr[i] = val;
}

int percolateUp(int hole,
 int val) {
 while(hole > 1 &&
 val < arr[hole/2])
 arr[hole] = arr[hole/2];
 hole = hole / 2;
 }
 return hole;
}

99 60 40

80 20

10

700 50

85

10 20 80 40 60 85 99 700 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

Pseudocode: deleteMin

Winter 2014 6 CSE373: Data Structures & Algorithms

int deleteMin() {
 if(isEmpty()) throw…
 ans = arr[1];
 hole = percolateDown
 (1,arr[size]);
 arr[hole] = arr[size];
 size--;
 return ans;
}

int percolateDown(int hole,
 int val) {
 while(2*hole <= size) {
 left = 2*hole;
 right = left + 1;
 if(right > size ||
 arr[left] < arr[right])
 target = left;
 else
 target = right;
 if(arr[target] < val) {
 arr[hole] = arr[target];
 hole = target;
 } else
 break;
 }
 return hole;
}

99 60 40

80 20

10

700 50

85

10 20 80 40 60 85 99 700 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

Winter 2014 7 CSE373: Data Structures & Algorithms

0 1 2 3 4 5 6 7

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

Winter 2014 8 CSE373: Data Structures & Algorithms

16
0 1 2 3 4 5 6 7

 16

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

Winter 2014 9 CSE373: Data Structures & Algorithms

16 32
0 1 2 3 4 5 6 7

 16

32

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

Winter 2014 10 CSE373: Data Structures & Algorithms

4 32 16
0 1 2 3 4 5 6 7

 4

32 16

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

Winter 2014 11 CSE373: Data Structures & Algorithms

4 32 16 67
0 1 2 3 4 5 6 7

 4

32 16

67

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

Winter 2014 12 CSE373: Data Structures & Algorithms

4 32 16 67 105
0 1 2 3 4 5 6 7

 4

32 16

105 67

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

Winter 2014 13 CSE373: Data Structures & Algorithms

4 32 16 67 105 43
0 1 2 3 4 5 6 7

 4

32 16

43 105 67

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

Winter 2014 14 CSE373: Data Structures & Algorithms

2 32 4 67 105 43 16
0 1 2 3 4 5 6 7

 2

32 4

16 43 105 67

Other operations

•  decreaseKey: given pointer to object in priority queue (e.g., its
array index), lower its priority value by p
–  Change priority and percolate up

•  increaseKey: given pointer to object in priority queue (e.g., its
array index), raise its priority value by p
–  Change priority and percolate down

•  remove: given pointer to object in priority queue (e.g., its array
index), remove it from the queue

–  decreaseKey with p = ∞, then deleteMin

Running time for all these operations?

Winter 2014 15 CSE373: Data Structures & Algorithms

Build Heap

•  Suppose you have n items to put in a new (empty) priority queue
–  Call this operation buildHeap

•  n inserts works
–  Only choice if ADT doesn’t provide buildHeap explicitly
–  O(n log n)

•  Why would an ADT provide this unnecessary operation?
–  Convenience
–  Efficiency: an O(n) algorithm called Floyd’s Method
–  Common issue in ADT design: how many specialized

operations

Winter 2014 16 CSE373: Data Structures & Algorithms

Floyd’s Method

1.  Use n items to make any complete tree you want
–  That is, put them in array indices 1,…,n

2.  Treat it as a heap and fix the heap-order property
–  Bottom-up: leaves are already in heap order, work up

toward the root one level at a time

Winter 2014 17 CSE373: Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Example

•  In tree form for readability
–  Purple for node not less than

descendants
•  heap-order problem

–  Notice no leaves are purple
–  Check/fix each non-leaf

bottom-up (6 steps here)

Winter 2014 18 CSE373: Data Structures & Algorithms

6 7 1 8

9 2 10 3

11 5

12

4

Example

Winter 2014 19 CSE373: Data Structures & Algorithms

6 7 1 8

9 2 10 3

11 5

12

4 6 7 1 8

9 2 10 3

11 5

12

4

Step 1

•  Happens to already be less than children (er, child)

Example

Winter 2014 20 CSE373: Data Structures & Algorithms

6 7 1 8

9 2 10 3

11 5

12

4

Step 2

•  Percolate down (notice that moves 1 up)

6 7 10 8

9 2 1 3

11 5

12

4

Example

Winter 2014 21 CSE373: Data Structures & Algorithms

Step 3

•  Another nothing-to-do step

6 7 10 8

9 2 1 3

11 5

12

4 6 7 10 8

9 2 1 3

11 5

12

4

Example

Winter 2014 22 CSE373: Data Structures & Algorithms

Step 4

•  Percolate down as necessary (steps 4a and 4b)

11 7 10 8

9 6 1 3

2 5

12

4 6 7 10 8

9 2 1 3

11 5

12

4

Example

Winter 2014 23 CSE373: Data Structures & Algorithms

Step 5

11 7 10 8

9 6 5 3

2 1

12

4 11 7 10 8

9 6 1 3

2 5

12

4

Example

Winter 2014 24 CSE373: Data Structures & Algorithms

Step 6

11 7 10 8

9 6 5 4

2 3

1

12 11 7 10 8

9 6 5 3

2 1

12

4

But is it right?

•  “Seems to work”
–  Let’s prove it restores the heap property (correctness)
–  Then let’s prove its running time (efficiency)

Winter 2014 25 CSE373: Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Correctness

Loop Invariant: For all j>i, arr[j] is less than its children
•  True initially: If j > size/2, then j is a leaf

–  Otherwise its left child would be at position > size
•  True after one more iteration: loop body and percolateDown

make arr[i] less than children without breaking the property
for any descendants

So after the loop finishes, all nodes are less than their children

Winter 2014 26 CSE373: Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Efficiency

Easy argument: buildHeap is O(n log n) where n is size
•  size/2 loop iterations
•  Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of
the algorithm…

Winter 2014 27 CSE373: Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Efficiency

Better argument: buildHeap is O(n) where n is size
•  size/2 total loop iterations: O(n)
•  1/2 the loop iterations percolate at most 1 step
•  1/4 the loop iterations percolate at most 2 steps
•  1/8 the loop iterations percolate at most 3 steps
•  …
•  ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) < 2 (page 4 of Weiss)

–  So at most 2(size/2) total percolate steps: O(n)
Winter 2014 28 CSE373: Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Lessons from buildHeap

•  Without buildHeap, our ADT already let clients implement their
own in O(n log n) worst case
–  Worst case is inserting lower priority values later

•  By providing a specialized operation internal to the data structure
(with access to the internal data), we can do O(n) worst case
–  Intuition: Most data is near a leaf, so better to percolate down

•  Can analyze this algorithm for:
–  Correctness:

•  Non-trivial inductive proof using loop invariant
–  Efficiency:

•  First analysis easily proved it was O(n log n)
•  Tighter analysis shows same algorithm is O(n)

Winter 2014 29 CSE373: Data Structures & Algorithms

Other branching factors
•  d-heaps: have d children instead of 2

–  Makes heaps shallower, useful for heaps too big for memory
(or cache)

•  Homework: Implement a 3-heap
–  Just have three children instead of 2
–  Still use an array with all positions from 1…heap-size used

Winter 2014 30 CSE373: Data Structures & Algorithms

 Index Children Indices
1 2,3,4
2 5,6,7
3 8,9,10
4 11,12,13
5 14,15,16
… …

What we are skipping

•  merge: given two priority queues, make one priority queue
–  How might you merge binary heaps:

•  If one heap is much smaller than the other?
•  If both are about the same size?

–  Different pointer-based data structures for priority queues
support logarithmic time merge operation (impossible with
binary heaps)

•  Leftist heaps, skew heaps, binomial queues
•  Worse constant factors
•  Trade-offs!

Winter 2014 31 CSE373: Data Structures & Algorithms

Amortized

•  Recall our plain-old stack implemented as an array that doubles its
size if it runs out of room
–  How can we claim push is O(1) time if resizing is O(n) time?
–  We can’t, but we can claim it’s an O(1) amortized operation

•  What does amortized mean?
•  When are amortized bounds good enough?
•  How can we prove an amortized bound?

Will just do two simple examples
–  Text has more sophisticated examples and proof techniques
–  Idea of how amortized describes average cost is essential

Winter 2014 32 CSE373: Data Structures & Algorithms

Amortized Complexity

If a sequence of M operations takes O(M f(n)) time,
we say the amortized runtime is O(f(n))

Amortized bound: worst-case guarantee over sequences of operations
–  Example: If any n operations take O(n), then amortized O(1)
–  Example: If any n operations take O(n3), then amortized O(n2)

•  The worst case time per operation can be larger than f(n)

–  As long as the worst case is always “rare enough” in any
sequence of operations

Amortized guarantee ensures the average time per operation for any
sequence is O(f(n))

Winter 2014 33 CSE373: Data Structures & Algorithms

“Building Up Credit”

•  Can think of preceding “cheap” operations as building up “credit”
that can be used to “pay for” later “expensive” operations

•  Because any sequence of operations must be under the bound,
enough “cheap” operations must come first
–  Else a prefix of the sequence, which is also a sequence,

would violate the bound

Winter 2014 34 CSE373: Data Structures & Algorithms

Example #1: Resizing stack

A stack implemented with an array where we double the size of the
array if it becomes full

Claim: Any sequence of push/pop/isEmpty is amortized O(1)

Need to show any sequence of M operations takes time O(M)

–  Recall the non-resizing work is O(M) (i.e., M*O(1))
–  The resizing work is proportional to the total number of element

copies we do for the resizing
–  So it suffices to show that:

 After M operations, we have done < 2M total element copies
 (So average number of copies per operation is bounded by a

constant)

Winter 2014 35 CSE373: Data Structures & Algorithms

Amount of copying

After M operations, we have done < 2M total element copies

Let n be the size of the array after M operations
–  Then we have done a total of:

 n/2 + n/4 + n/8 + … INITIAL_SIZE < n
 element copies

–  Because we must have done at least enough push
operations to cause resizing up to size n:

 M ≥ n/2
–  So

2M ≥ n > number of element copies

Winter 2014 36 CSE373: Data Structures & Algorithms

Other approaches

•  If array grows by a constant amount (say 1000),
 operations are not amortized O(1)

–  After O(M) operations, you may have done Θ(M2) copies

•  If array shrinks when 1/2 empty,
 operations are not amortized O(1)

–  Terrible case: pop once and shrink, push once and grow, pop
once and shrink, …

•  If array shrinks when 3/4 empty,
 it is amortized O(1)

–  Proof is more complicated, but basic idea remains: by the time
an expensive operation occurs, many cheap ones occurred

Winter 2014 37 CSE373: Data Structures & Algorithms

Example #2: Queue with two stacks
A clever and simple queue implementation using only stacks

Winter 2014 38 CSE373: Data Structures & Algorithms

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

C
B
A

in out

enqueue: A, B, C

Example #2: Queue with two stacks
A clever and simple queue implementation using only stacks

Winter 2014 39 CSE373: Data Structures & Algorithms

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

in out

dequeue

B
C

A

Example #2: Queue with two stacks
A clever and simple queue implementation using only stacks

Winter 2014 40 CSE373: Data Structures & Algorithms

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

in out

enqueue D, E

B
C

A

E
D

Example #2: Queue with two stacks
A clever and simple queue implementation using only stacks

Winter 2014 41 CSE373: Data Structures & Algorithms

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

in out

dequeue twice

C B A

E
D

Example #2: Queue with two stacks
A clever and simple queue implementation using only stacks

Winter 2014 42 CSE373: Data Structures & Algorithms

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

in out

dequeue again

D C B A

E

Correctness and usefulness

•  If x is enqueued before y, then x will be popped from in later
than y and therefore popped from out sooner than y
–  So it is a queue

•  Example:
–  Wouldn’t it be nice to have a queue of t-shirts to wear

instead of a stack (like in your dresser)?
–  So have two stacks

•  in: stack of t-shirts go after you wash them
•  out: stack of t-shirts to wear
•  if out is empty, reverse in into out

Winter 2014 43 CSE373: Data Structures & Algorithms

Analysis

•  dequeue is not O(1) worst-case because out might be empty
and in may have lots of items

•  But if the stack operations are (amortized) O(1), then any
sequence of queue operations is amortized O(1)

–  The total amount of work done per element is 1 push onto
in, 1 pop off of in, 1 push onto out, 1 pop off of out

–  When you reverse n elements, there were n earlier O(1)
enqueue operations to average with

Winter 2014 44 CSE373: Data Structures & Algorithms

Amortized useful?

•  When the average per operation is all we care about (i.e., sum
over all operations), amortized is perfectly fine
–  This is the usual situation

•  If we need every operation to finish quickly (e.g., in a web
server), amortized bounds may be too weak

•  While amortized analysis is about averages, we are averaging
cost-per-operation on worst-case input
–  Contrast: Average-case analysis is about averages across

possible inputs. Example: if all initial permutations of an
array are equally likely, then quicksort is O(n log n) on
average even though on some inputs it is O(n2))

Winter 2014 45 CSE373: Data Structures & Algorithms

Not always so simple

•  Proofs for amortized bounds can be much more complicated

•  Example: Splay trees are dictionaries with amortized O(log n)
operations
–  No extra height field like AVL trees
–  See Chapter 4.5 if curious

•  For more complicated examples, the proofs need much more
sophisticated invariants and “potential functions” to describe
how earlier cheap operations build up “energy” or “money” to
“pay for” later expensive operations
–  See Chapter 11 if curious

•  But complicated proofs have nothing to do with the code!

Winter 2014 46 CSE373: Data Structures & Algorithms

