CSE373: Data Structures & Algorithms

Lecture 8: Priority Queues

Aaron Bauer

Winter 2014
Announcements

• Midterm next week
 – Midterm review TA session on Tuesday
 – Shuo extra office hours 12:30-1:30 Monday
• Homework 1 feedback out soon
Priority Queue ADT

- Stores elements with data and comparable priorities
 - “priority 1” is more important than “priority 4”
- Operations
 - `insert`
 - `deleteMin`
 - `is_empty`
Applications

Like all good ADTs, the priority queue arises often
 – Sometimes blatant, sometimes less obvious

• Run multiple programs in the operating system
 – “critical” before “interactive” before “compute-intensive”
 – Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)
• Select print jobs in order of decreasing length?
• Forward network packets in order of urgency
• Select most frequent symbols for data compression (cf. CSE143)
• Sort (first insert all, then repeatedly deleteMin)
 – Much like Homework 1 uses a stack to implement reverse
More applications

- “Greedy” algorithms
 - May see an example when we study graphs in a few weeks

- Discrete event simulation (system simulation, virtual worlds, …)
 - Each event e happens at some time t, updating system state and generating new events e_1, \ldots, e_n at times $t+t_1, \ldots, t+t_n$
 - Naïve approach: advance “clock” by 1 unit at a time and process any events that happen then
 - Better:
 - Pending events in a priority queue (priority = event time)
 - Repeatedly: \texttt{deleteMin} and then \texttt{insert} new events
 - Effectively “set clock ahead to next event”
Finding a good data structure

- Will show an efficient, non-obvious data structure for this ADT
 - But first let’s analyze some “obvious” ideas for n data items
 - All times worst-case; assume arrays “have room”

<table>
<thead>
<tr>
<th>data</th>
<th>insert algorithm / time</th>
<th>deleteMin algorithm / time</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted array</td>
<td>add at end O(1)</td>
<td>search O(n)</td>
</tr>
<tr>
<td>unsorted linked list</td>
<td>add at front O(1)</td>
<td>search O(n)</td>
</tr>
<tr>
<td>sorted circular array</td>
<td>search / shift O(n)</td>
<td>move front O(1)</td>
</tr>
<tr>
<td>sorted linked list</td>
<td>put in right place O(n)</td>
<td>remove at front O(1)</td>
</tr>
<tr>
<td>binary search tree</td>
<td>put in right place O(n)</td>
<td>leftmost O(n)</td>
</tr>
<tr>
<td>AVL tree</td>
<td>put in right place O(log n)</td>
<td>leftmost O(log n)</td>
</tr>
</tbody>
</table>
More on possibilities

- If priorities are random, binary search tree will likely do better
 - $O(\log n)$ insert and $O(\log n)$ deleteMin on average

- One more idea: if priorities are 0, 1, …, k can use array of lists
 - insert: add to front of list at arr[priority], $O(1)$
 - deleteMin: remove from lowest non-empty list $O(k)$

- We are about to see a data structure called a “binary heap”
 - $O(\log n)$ insert and $O(\log n)$ deleteMin worst-case
 - Possible because we don’t support unneeded operations; no need to maintain a full sort
 - Very good constant factors
 - If items arrive in random order, then insert is $O(1)$ on average
Our data structure

A binary min-heap (or just binary heap or just heap) is:

- **Structure property:** A complete binary tree
- **Heap property:** The priority of every (non-root) node is greater than the priority of its parent
 - Not a binary search tree

So:

- Where is the highest-priority item?
- What is the height of a heap with n items?
Operations: basic idea

• **findMin**: return `root.data`
• **deleteMin**:
 1. `answer = root.data`
 2. Move right-most node in last row to root to restore structure property
 3. “Percolate down” to restore heap property
• **insert**:
 1. Put new node in next position on bottom row to restore structure property
 2. “Percolate up” to restore heap property

Overall strategy:
• *Preserve structure property*
• *Break and restore heap property*
DeleteMin

1. Delete (and later return) value at root node
2. Restore the Structure Property

• We now have a “hole” at the root
 – Need to fill the hole with another value

• When we are done, the tree will have one less node and must still be complete
3. Restore the Heap Property

Percolate down:
• Keep comparing with both children
• Swap with lesser child and go down one level
• Done if both children are ≥ item or reached a leaf node

Why is this correct? What is the run time?
DeleteMin: Run Time Analysis

- Run time is $O(\text{height of heap})$

- A heap is a complete binary tree

- Height of a complete binary tree of n nodes?
 - $\text{height} = \lceil \log_2(n) \rceil$

- Run time of deleteMin is $O(\log n)$
Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct
Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property
Maintain the heap property

Percolate up:
• Put new data in new location
• If parent larger, swap with parent, and continue
• Done if parent \leq item or reached root

Why is this correct? What is the run time?
Insert: Run Time Analysis

- Like `deleteMin`, worst-case time proportional to tree height
 - $O(\log n)$

- But... `deleteMin` needs the “last used” complete-tree position and `insert` needs the “next to use” complete-tree position
 - If “keep a reference to there” then `insert` and `deleteMin` have to adjust that reference: $O(\log n)$ in worst case
 - Could calculate how to find it in $O(\log n)$ from the root given the size of the heap
 - But it’s not easy
 - And then `insert` is always $O(\log n)$, promised $O(1)$ on average (assuming random arrival of items)

- There’s a “trick”: don’t represent complete trees with explicit edges!
Review

• Priority Queue ADT: **insert** comparable object, **deleteMin**
• Binary heap data structure: Complete binary tree where each node has priority value greater than its parent
• $O(\text{height-of-tree}) = O(\log n)$ **insert** and **deleteMin** operations
 – **insert**: put at new last position in tree and percolate-up
 – **deleteMin**: remove root, put last element at root and percolate-down
• But: tracking the “last position” is painful and we can do better
Array Representation of Binary Trees

From node i:
- left child: $i \times 2$
- right child: $i \times 2 + 1$
- parent: $i / 2$

(wasting index 0 is convenient for the index arithmetic)

implicit (array) implementation:

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
```

Winter 2014
Judging the array implementation

Plusses:
• Non-data space: just index 0 and unused space on right
 – In conventional tree representation, one edge per node (except for root), so $n-1$ wasted space (like linked lists)
 – Array would waste more space if tree were not complete
• Multiplying and dividing by 2 is very fast (shift operations in hardware)
• Last used position is just index size

Minuses:
• Same might-be-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”
This pseudocode uses ints. In real use, you will have data nodes with priorities.
Pseudocode: deleteMin

This pseudocode uses ints. In real use, you will have data nodes with priorities.

```c
int deleteMin() {
    if(isEmpty()) throw...
    ans = arr[1];
    hole = percolateDown(1,arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}

int percolateDown(int hole, int val) {
    while(2*hole <= size) {
        left = 2*hole;
        right = left + 1;
        if(right > size || arr[left] < arr[right])
            target = left;
        else
            target = right;
        if(arr[target] < val) {
            arr[hole] = arr[target];
            hole = target;
        } else
            break;
    }
    return hole;
}
```

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>80</th>
<th>40</th>
<th>60</th>
<th>85</th>
<th>99</th>
<th>700</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

```
0 1 2 3 4 5 6 7
```

```
16
```

```
16
```

```
16
```

```
```
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

```
   16  32
  0  1  2  3  4  5  6  7
```

```
16
 /   \
32   \
    / \n   /   \n  /     \
 /       \
```

Winter 2014 CSE373: Data Structures & Algorithms 25
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

```
  4  32  16
  0  1  2  3  4  5  6  7
```

```
  4
 /|
/  \
32 16
```

```
  \
   \\
    \\
```
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

\[\begin{array}{cccccccc}
& & & 2 & & & & \\
& & 32 & & & & & \\
& 4 & & & & & & \\
& & & 67 & & & & \\
& & & & & 105 & & \\
& & & & & & & 43 \\
& & & & & & & 16 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\]
Other operations

- **decreaseKey**: given pointer to object in priority queue (e.g., its array index), lower its priority value by p
 - Change priority and percolate up

- **increaseKey**: given pointer to object in priority queue (e.g., its array index), raise its priority value by p
 - Change priority and percolate down

- **remove**: given pointer to object in priority queue (e.g., its array index), remove it from the queue
 - **decreaseKey** with $p = \infty$, then **deleteMin**

Running time for all these operations?
Build Heap

• Suppose you have n items to put in a new (empty) priority queue
 – Call this operation `buildHeap`

• n inserts works
 – Only choice if ADT doesn’t provide `buildHeap` explicitly
 – $O(n \log n)$

• Why would an ADT provide this unnecessary operation?
 – Convenience
 – Efficiency: an $O(n)$ algorithm called Floyd’s Method
 – Common issue in ADT design: how many specialized operations
Floyd’s Method

1. Use n items to make any complete tree you want
 - That is, put them in array indices 1,\ldots,n

2. Treat it as a heap and fix the heap-order property
 - Bottom-up: leaves are already in heap order, work up toward the root one level at a time

```c
void buildHeap() {
    for (i = size/2; i>0; i--)
        val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
}
```
Example

- In tree form for readability
 - **Purple** for node not less than descendants
 - heap-order problem
 - Notice no leaves are **purple**
 - Check/fix each non-leaf bottom-up (6 steps here)
Example

- Happens to already be less than children (er, child)
Example

- Percolate down (notice that moves 1 up)
Example

- Another nothing-to-do step
Example

Step 4

- Percolate down as necessary (steps 4a and 4b)
Example

Step 5

Winter 2014

CSE373: Data Structures & Algorithms
Example
But is it right?

• “Seems to work”
 – Let’s prove it restores the heap property (correctness)
 – Then let’s prove its running time (efficiency)

```java
void buildHeap() {
    for (i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i, val);
        arr[hole] = val;
    }
}
```
Correctness

void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}

Loop Invariant: For all j>i, arr[j] is less than its children

• True initially: If j > size/2, then j is a leaf
 – Otherwise its left child would be at position > size
• True after one more iteration: loop body and percolateDown make arr[i] less than children without breaking the property for any descendants

So after the loop finishes, all nodes are less than their children
Efficiency

```java
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Easy argument: `buildHeap` is $O(n \log n)$ where n is `size`

- `size/2` loop iterations
- Each iteration does one `percolateDown`, each is $O(\log n)$

This is correct, but there is a more precise ("tighter") analysis of the algorithm…
Efficiency

void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}

Better argument: buildHeap is $O(n)$ where n is size
- $size/2$ total loop iterations: $O(n)$
- 1/2 the loop iterations percolate at most 1 step
- 1/4 the loop iterations percolate at most 2 steps
- 1/8 the loop iterations percolate at most 3 steps
- ...
- $((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) < 2$ (page 4 of Weiss)
 - So at most $2(size/2)$ total percolate steps: $O(n)$
Lessons from buildHeap

• Without **buildHeap**, our ADT already let clients implement their own in $O(n \log n)$ worst case
 – Worst case is inserting lower priority values later

• By providing a specialized operation internal to the data structure (with access to the internal data), we can do $O(n)$ worst case
 – Intuition: Most data is near a leaf, so better to percolate down

• Can analyze this algorithm for:
 – Correctness:
 • Non-trivial inductive proof using loop invariant
 – Efficiency:
 • First analysis easily proved it was $O(n \log n)$
 • Tighter analysis shows same algorithm is $O(n)$
Other branching factors

• *d*-heaps: have *d* children instead of 2
 – Makes heaps shallower, useful for heaps too big for memory (or cache)

• Homework: Implement a **3-heap**
 – Just have three children instead of 2
 – Still use an array with all positions from 1…heap-size used

<table>
<thead>
<tr>
<th>Index</th>
<th>Children Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,3,4</td>
</tr>
<tr>
<td>2</td>
<td>5,6,7</td>
</tr>
<tr>
<td>3</td>
<td>8,9,10</td>
</tr>
<tr>
<td>4</td>
<td>11,12,13</td>
</tr>
<tr>
<td>5</td>
<td>14,15,16</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>
What we are skipping

• **merge**: given two priority queues, make one priority queue
 – How might you merge binary heaps:
 • If one heap is much smaller than the other?
 • If both are about the same size?
 – Different pointer-based data structures for priority queues support logarithmic time `merge` operation (impossible with binary heaps)
 • Leftist heaps, skew heaps, binomial queues
 • Worse constant factors
 • Trade-offs!