
CSE373: Data Structures & Algorithms

Lecture 8: Priority Queues

Aaron Bauer
Winter 2014

Announcements

•  Midterm next week
– Midterm review TA session on Tuesday
– Shuo extra office hours 12:30-1:30 Monday

•  Homework 1 feedback out soon

Winter 2014 2 CSE373: Data Structures & Algorithms

Priority Queue ADT

•  Stores elements with data and comparable priorities
–  “priority 1” is more important than “priority 4”

•  Operations
–  insert
–  deleteMin
–  is_empty

Winter 2014 3 CSE373: Data Structures & Algorithms

Applications

Like all good ADTs, the priority queue arises often
–  Sometimes blatant, sometimes less obvious

•  Run multiple programs in the operating system
–  “critical” before “interactive” before “compute-intensive”
–  Maybe let users set priority level

•  Treat hospital patients in order of severity (or triage)
•  Select print jobs in order of decreasing length?
•  Forward network packets in order of urgency
•  Select most frequent symbols for data compression (cf. CSE143)
•  Sort (first insert all, then repeatedly deleteMin)

–  Much like Homework 1 uses a stack to implement reverse

Winter 2014 4 CSE373: Data Structures & Algorithms

More applications

•  “Greedy” algorithms
–  May see an example when we study graphs in a few weeks

•  Discrete event simulation (system simulation, virtual worlds, …)
–  Each event e happens at some time t, updating system state

and generating new events e1, …, en at times t+t1, …, t+tn
–  Naïve approach: advance “clock” by 1 unit at a time and

process any events that happen then
–  Better:

•  Pending events in a priority queue (priority = event time)
•  Repeatedly: deleteMin and then insert new events
•  Effectively “set clock ahead to next event”

Winter 2014 5 CSE373: Data Structures & Algorithms

Finding a good data structure

•  Will show an efficient, non-obvious data structure for this ADT
–  But first let’s analyze some “obvious” ideas for n data items
–  All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time
unsorted array
unsorted linked list
sorted circular array
sorted linked list
binary search tree
AVL tree

Winter 2014 6 CSE373: Data Structures & Algorithms

add at end O(1) search O(n)
add at front O(1) search O(n)
search / shift O(n) move front O(1)
put in right place O(n) remove at front O(1)
put in right place O(n) leftmost O(n)
put in right place O(log n) leftmost O(log n)

More on possibilities

•  If priorities are random, binary search tree will likely do better
–  O(log n) insert and O(log n) deleteMin on average

•  One more idea: if priorities are 0, 1, …, k can use array of lists
–  insert: add to front of list at arr[priority], O(1)
–  deleteMin: remove from lowest non-empty list O(k)

•  We are about to see a data structure called a “binary heap”
–  O(log n) insert and O(log n) deleteMin worst-case

•  Possible because we don’t support unneeded
operations; no need to maintain a full sort

–  Very good constant factors
–  If items arrive in random order, then insert is O(1) on

average

Winter 2014 7 CSE373: Data Structures & Algorithms

Our data structure
A binary min-heap (or just binary heap or just heap) is:
•  Structure property: A complete binary tree
•  Heap property: The priority of every (non-root) node is greater

than the priority of its parent
–  Not a binary search tree

Winter 2014 8 CSE373: Data Structures & Algorithms

15 30

80 20

10 not a heap

99 60 40

80 20

10

50 700

85

a heap

So:
•  Where is the highest-priority item?
•  What is the height of a heap with n items?

Operations: basic idea

•  findMin: return root.data
•  deleteMin:

1.   answer = root.data
2.  Move right-most node in last

row to root to restore
structure property

3.  “Percolate down” to restore
heap property

•  insert:
1.  Put new node in next position

on bottom row to restore
structure property

2.  “Percolate up” to restore
heap property

Winter 2014 9 CSE373: Data Structures & Algorithms

99 60 40

80 20

10

50 700

85

Overall strategy:
•  Preserve structure property
•  Break and restore heap

property

10

DeleteMin

3 4

9 8 5 7

10 6 9 11

1. Delete (and later return) value at
root node

Winter 2014 CSE373: Data Structures & Algorithms

11

2. Restore the Structure Property

•  We now have a “hole” at the root
–  Need to fill the hole with another

value

•  When we are done, the tree will have
one less node and must still be complete

3 4

9 8 5 7

10 6 9 11

3 4

9 8 5 7

10 6 9 11
Winter 2014 CSE373: Data Structures & Algorithms

12

3. Restore the Heap Property

Percolate down:
•  Keep comparing with both children
•  Swap with lesser child and go down one level
•  Done if both children are ≥ item or reached a leaf node

Why is this correct? What is the run time?

3 4

9 8 5 7

10

6 9 11

4

9 8 5 7

10

6 9 11

3

8 4

9 10 5 7

6 9 11

3
?

?

Winter 2014 CSE373: Data Structures & Algorithms

13

DeleteMin: Run Time Analysis

•  Run time is O(height of heap)

•  A heap is a complete binary tree

•  Height of a complete binary tree of n nodes?
–  height = ⎣ log2(n) ⎦

•  Run time of deleteMin is O(log n)

Winter 2014 CSE373: Data Structures & Algorithms

14

Insert

•  Add a value to the tree

•  Afterwards, structure and heap
properties must still be correct

 8 4

9 10 5 7

6 9 11

1

2

Winter 2014
CSE373: Data Structures & Algorithms

15

Insert: Maintain the Structure Property

•  There is only one valid tree shape after
we add one more node

•  So put our new data there and then
focus on restoring the heap property 8 4

9 10 5 7

6 9 11

1

2

Winter 2014 CSE373: Data Structures & Algorithms

16

Maintain the heap property

2

8 4

9 10 5 7

6 9 11

1

Percolate up:
•  Put new data in new location
•  If parent larger, swap with parent, and continue
•  Done if parent ≤ item or reached root

Why is this correct? What is the run time?

?

2
5

8 4

9 10 7

6 9 11

1

?

2

5

8

9 10 4 7

6 9 11

1 ?

Winter 2014 CSE373: Data Structures & Algorithms

17

Insert: Run Time Analysis

•  Like deleteMin, worst-case time proportional to tree height
–  O(log n)

•  But… deleteMin needs the “last used” complete-tree position
and insert needs the “next to use” complete-tree position
–  If “keep a reference to there” then insert and deleteMin

have to adjust that reference: O(log n) in worst case
–  Could calculate how to find it in O(log n) from the root given

the size of the heap
•  But it’s not easy
•  And then insert is always O(log n), promised O(1) on

average (assuming random arrival of items)

•  There’s a “trick”: don’t represent complete trees with explicit edges!

Winter 2014 CSE373: Data Structures & Algorithms

Review

•  Priority Queue ADT: insert comparable object, deleteMin
•  Binary heap data structure: Complete binary tree where each

node has priority value greater than its parent
•  O(height-of-tree)=O(log n) insert and deleteMin operations

–  insert: put at new last position in tree and percolate-up
–  deleteMin: remove root, put last element at root and

 percolate-down
•  But: tracking the “last position” is painful and we can do better

Winter 2014 18 CSE373: Data Structures & Algorithms

insert deleteMin

 6 2
 15 23
 12 18
45 3 7 99 60 40

80 20

10

700 50

85

Winter 2014 19

Array Representation of Binary Trees

G E D

C B

A

J K H I

F

L

From node i:

left child: i*2
right child: i*2+1
parent: i/2

(wasting index 0 is
convenient for the
index arithmetic)

7

1

2 3

4 5 6

9 8 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:

CSE373: Data Structures & Algorithms

Judging the array implementation

Plusses:
•  Non-data space: just index 0 and unused space on right

–  In conventional tree representation, one edge per node
(except for root), so n-1 wasted space (like linked lists)

–  Array would waste more space if tree were not complete
•  Multiplying and dividing by 2 is very fast (shift operations in

hardware)
•  Last used position is just index size

Minuses:
•  Same might-be-empty or might-get-full problems we saw with

stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”

Winter 2014 20 CSE373: Data Structures & Algorithms

Pseudocode: insert

Winter 2014 21 CSE373: Data Structures & Algorithms

void insert(int val) {
 if(size==arr.length-1)

 resize();
 size++;
 i=percolateUp(size,val);
 arr[i] = val;
}

int percolateUp(int hole,
 int val) {
 while(hole > 1 &&
 val < arr[hole/2])
 arr[hole] = arr[hole/2];
 hole = hole / 2;
 }
 return hole;
}

99 60 40

80 20

10

70 50

85

10 20 80 40 60 85 99 700 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

Pseudocode: deleteMin

Winter 2014 22 CSE373: Data Structures & Algorithms

int deleteMin() {
 if(isEmpty()) throw…
 ans = arr[1];
 hole = percolateDown
 (1,arr[size]);
 arr[hole] = arr[size];
 size--;
 return ans;
}

int percolateDown(int hole,
 int val) {
 while(2*hole <= size) {
 left = 2*hole;
 right = left + 1;
 if(right > size ||
 arr[left] < arr[right])
 target = left;
 else
 target = right;
 if(arr[target] < val) {
 arr[hole] = arr[target];
 hole = target;
 } else
 break;
 }
 return hole;
}

99 60 40

80 20

10

700 50

85

10 20 80 40 60 85 99 700 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

Winter 2014 23 CSE373: Data Structures & Algorithms

0 1 2 3 4 5 6 7

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

Winter 2014 24 CSE373: Data Structures & Algorithms

16
0 1 2 3 4 5 6 7

 16

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

Winter 2014 25 CSE373: Data Structures & Algorithms

16 32
0 1 2 3 4 5 6 7

 16

32

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

Winter 2014 26 CSE373: Data Structures & Algorithms

4 32 16
0 1 2 3 4 5 6 7

 4

32 16

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

Winter 2014 27 CSE373: Data Structures & Algorithms

4 32 16 67
0 1 2 3 4 5 6 7

 4

32 16

67

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

Winter 2014 28 CSE373: Data Structures & Algorithms

4 32 16 67 105
0 1 2 3 4 5 6 7

 4

32 16

105 67

Example

1.  insert: 16, 32, 4, 67, 105, 43, 2
2.  deleteMin

Winter 2014 29 CSE373: Data Structures & Algorithms

2 32 4 67 105 43 16
0 1 2 3 4 5 6 7

 2

32 4

16 43 105 67

Other operations

•  decreaseKey: given pointer to object in priority queue (e.g., its
array index), lower its priority value by p
–  Change priority and percolate up

•  increaseKey: given pointer to object in priority queue (e.g., its
array index), raise its priority value by p
–  Change priority and percolate down

•  remove: given pointer to object in priority queue (e.g., its array
index), remove it from the queue

–  decreaseKey with p = ∞, then deleteMin

Running time for all these operations?

Winter 2014 30 CSE373: Data Structures & Algorithms

Build Heap

•  Suppose you have n items to put in a new (empty) priority queue
–  Call this operation buildHeap

•  n inserts works
–  Only choice if ADT doesn’t provide buildHeap explicitly
–  O(n log n)

•  Why would an ADT provide this unnecessary operation?
–  Convenience
–  Efficiency: an O(n) algorithm called Floyd’s Method
–  Common issue in ADT design: how many specialized

operations

Winter 2014 31 CSE373: Data Structures & Algorithms

Floyd’s Method

1.  Use n items to make any complete tree you want
–  That is, put them in array indices 1,…,n

2.  Treat it as a heap and fix the heap-order property
–  Bottom-up: leaves are already in heap order, work up

toward the root one level at a time

Winter 2014 32 CSE373: Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Example

•  In tree form for readability
–  Purple for node not less than

descendants
•  heap-order problem

–  Notice no leaves are purple
–  Check/fix each non-leaf

bottom-up (6 steps here)

Winter 2014 33 CSE373: Data Structures & Algorithms

6 7 1 8

9 2 10 3

11 5

12

4

Example

Winter 2014 34 CSE373: Data Structures & Algorithms

6 7 1 8

9 2 10 3

11 5

12

4 6 7 1 8

9 2 10 3

11 5

12

4

Step 1

•  Happens to already be less than children (er, child)

Example

Winter 2014 35 CSE373: Data Structures & Algorithms

6 7 1 8

9 2 10 3

11 5

12

4

Step 2

•  Percolate down (notice that moves 1 up)

6 7 10 8

9 2 1 3

11 5

12

4

Example

Winter 2014 36 CSE373: Data Structures & Algorithms

Step 3

•  Another nothing-to-do step

6 7 10 8

9 2 1 3

11 5

12

4 6 7 10 8

9 2 1 3

11 5

12

4

Example

Winter 2014 37 CSE373: Data Structures & Algorithms

Step 4

•  Percolate down as necessary (steps 4a and 4b)

11 7 10 8

9 6 1 3

2 5

12

4 6 7 10 8

9 2 1 3

11 5

12

4

Example

Winter 2014 38 CSE373: Data Structures & Algorithms

Step 5

11 7 10 8

9 6 5 3

2 1

12

4 11 7 10 8

9 6 1 3

2 5

12

4

Example

Winter 2014 39 CSE373: Data Structures & Algorithms

Step 6

11 7 10 8

9 6 5 4

2 3

1

12 11 7 10 8

9 6 5 3

2 1

12

4

But is it right?

•  “Seems to work”
–  Let’s prove it restores the heap property (correctness)
–  Then let’s prove its running time (efficiency)

Winter 2014 40 CSE373: Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Correctness

Loop Invariant: For all j>i, arr[j] is less than its children
•  True initially: If j > size/2, then j is a leaf

–  Otherwise its left child would be at position > size
•  True after one more iteration: loop body and percolateDown

make arr[i] less than children without breaking the property
for any descendants

So after the loop finishes, all nodes are less than their children

Winter 2014 41 CSE373: Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Efficiency

Easy argument: buildHeap is O(n log n) where n is size
•  size/2 loop iterations
•  Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of
the algorithm…

Winter 2014 42 CSE373: Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Efficiency

Better argument: buildHeap is O(n) where n is size
•  size/2 total loop iterations: O(n)
•  1/2 the loop iterations percolate at most 1 step
•  1/4 the loop iterations percolate at most 2 steps
•  1/8 the loop iterations percolate at most 3 steps
•  …
•  ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) < 2 (page 4 of Weiss)

–  So at most 2(size/2) total percolate steps: O(n)
Winter 2014 43 CSE373: Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 hole = percolateDown(i,val);

 arr[hole] = val;
 }
}

Lessons from buildHeap

•  Without buildHeap, our ADT already let clients implement their
own in O(n log n) worst case
–  Worst case is inserting lower priority values later

•  By providing a specialized operation internal to the data structure
(with access to the internal data), we can do O(n) worst case
–  Intuition: Most data is near a leaf, so better to percolate down

•  Can analyze this algorithm for:
–  Correctness:

•  Non-trivial inductive proof using loop invariant
–  Efficiency:

•  First analysis easily proved it was O(n log n)
•  Tighter analysis shows same algorithm is O(n)

Winter 2014 44 CSE373: Data Structures & Algorithms

Other branching factors
•  d-heaps: have d children instead of 2

–  Makes heaps shallower, useful for heaps too big for memory
(or cache)

•  Homework: Implement a 3-heap
–  Just have three children instead of 2
–  Still use an array with all positions from 1…heap-size used

Winter 2014 45 CSE373: Data Structures & Algorithms

 Index Children Indices
1 2,3,4
2 5,6,7
3 8,9,10
4 11,12,13
5 14,15,16
… …

What we are skipping

•  merge: given two priority queues, make one priority queue
–  How might you merge binary heaps:

•  If one heap is much smaller than the other?
•  If both are about the same size?

–  Different pointer-based data structures for priority queues
support logarithmic time merge operation (impossible with
binary heaps)

•  Leftist heaps, skew heaps, binomial queues
•  Worse constant factors
•  Trade-offs!

Winter 2014 46 CSE373: Data Structures & Algorithms

