CSE373: Data Structures & Algorithms

Lecture 8: Priority Queues

Aaron Bauer
Winter 2014

Announcements

* Midterm next week

— Midterm review TA session on Tuesday

— Shuo extra office hours 12:30-1:30 Monday
« Homework 1 feedback out soon

Winter 2014 CSE373: Data Structures & Algorithms 2

Priority Queue ADT

« Stores elements with data and comparable priorities
— “priority 1”7 is more important than “priority 4"
* Operations
— insert
— deleteMin
— 1s _empty

Winter 2014 CSE373: Data Structures & Algorithms

Applications

Like all good ADTs, the priority queue arises often
— Sometimes blatant, sometimes less obvious

Run multiple programs in the operating system
— “critical” before “interactive” before “compute-intensive”
— Maybe let users set priority level

« Treat hospital patients in order of severity (or triage)

« Select print jobs in order of decreasing length?

« Forward network packets in order of urgency

» Select most frequent symbols for data compression (cf. CSE143)

« Sort (first insert all, then repeatedly deleteMin)
— Much like Homework 1 uses a stack to implement reverse

Winter 2014 CSE373: Data Structures & Algorithms 4

More applications

« “Greedy” algorithms
— May see an example when we study graphs in a few weeks

« Discrete event simulation (system simulation, virtual worlds, ...)

— Each event e happens at some time t, updating system state
and generating new events e1, ..., en at times t+t1, ..., t+tn

— Nalve approach: advance “clock” by 1 unit at a time and
process any events that happen then

— Better:

* Pending events in a priority queue (priority = event time)
 Repeatedly: deleteMin and then insert new events
 Effectively “set clock ahead to next event”

Winter 2014 CSE373: Data Structures & Algorithms 5

Finding a good data structure

 Will show an efficient, non-obvious data structure for this ADT
— But first let’'s analyze some “obvious” ideas for n data items
— All times worst-case; assume arrays “have room”

data insert algorithm / time

unsorted array add at end O(1)
unsorted linked list add at front O(1)
sorted circular array search / shift O(n)
sorted linked list put in right place O(n)

binary search tree put in right place O(n)

deleteMin algorithm / time

search O(n)
search O(n)
move front O(1)

remove at front O(1)
leftmost O(n)

AVL tree put in right place O(log n) leftmost O(log n)

Winter 2014 CSE373: Data Structures & Algorithms 6

More on possibilities

« [If priorities are random, binary search tree will likely do better
— O(1log n) insert and O(1og n) deleteMin on average

 One more idea: if priorities are 0, 1, ..., k can use array of lists
— insert: add to front of list at arr [priority], O(1)
— deleteMin: remove from lowest non-empty list O(k)

 We are about to see a data structure called a “binary heap”
— O(log n) insert and O(log n) deleteMin worst-case

» Possible because we don’t support unneeded
operations; no need to maintain a full sort

— Very good constant factors
— Ifitems arrive in random order, then insert is O(1) on
average

Winter 2014 CSE373: Data Structures & Algorithms

Our data structure

A binary min-heap (or just binary heap or just heap) is:
« Structure property: A complete binary tree

« Heap property: The priority of every (non-root) node is greater
than the priority of its parent

— Noft a binary search tree

notaheap (¢

200 B

G G

So:
* Where is the highest-priority item?
« What is the height of a heap with n items?

Winter 2014 CSE373: Data Structures & Algorithms

Operations: basic idea

e findMin: return root.data
e deleteMin:
1. answer = root.data

2. Move right-most node in last
row to root to restore
structure property

3. “Percolate down” to restore
heap property

e insert: Overall strategy:
1. Put new node in next position ~ * FPreserve structure property
on bottom row to restore » Break and restore heap
structure property property

2. “Percolate up” to restore
heap property

Winter 2014 CSE373: Data Structures & Algorithms 9

DeleteMin

1. Delete (and later return) value at
root node

Winter 2014 CSE373: Data Structures & Algorithms

10

2. Restore the Structure Property

* We now have a “hole” at the root

— Need to fill the hole with another
value

 When we are done, the tree will have
one less node and must still be complete

Winter 2014 CSE373: Data Structures & Algorithms 11

3. Restore the Heap Property

Percolate down:

» Keep comparing with both children

« Swap with lesser child and go down one level

» Done if both children are = item or reached a leaf node

Why is this correct? What is the run time?

Winter 2014 CSE373: Data Structures & Algorithms 12

DeleteMin: Run Time Analysis

* Run time is O(height of heap)
A heap is a complete binary tree

« Height of a complete binary tree of n nodes?
— height = | 1og,(n) |

* Run time of deleteMin is O(log n)

Winter 2014 CSE373: Data Structures & Algorithms

13

Insert

« Add a value to the tree

« Afterwards, structure and heap
properties must still be correct

CSE373: Data Structures & Algorithms
Winter 2014 14

Insert: Maintain the Structure Property

* There is only one valid tree shape after @

we add one more node @)

» So put our new data there and then
focus on restoring the heap property

Winter 2014 CSE373: Data Structures & Algorithms 15

Maintain the heap property

Percolate up:

* Put new data in new location

« |If parent larger, swap with parent, and continue
* Done if parent < item or reached root

Why is this correct? What is the run time?

Winter 2014 CSE373: Data Structures & Algorithms 16

Insert: Run Time Analysis

 Like deleteMin, worst-case time proportional to tree height
— O(1og n)

 But... deleteMin needs the “last used” complete-tree position
and insert needs the “next to use” complete-tree position

— If “keep a reference to there” then insert and deleteMin
have to adjust that reference: O(1og n) in worst case

— Could calculate how to find it in O(1og n) from the root given
the size of the heap

« But it's not easy
* And then insert is always O(log n), promised O(1) on
average (assuming random arrival of items)

 There's a “trick”™. don’t represent complete trees with explicit edges!

Winter 2014 CSE373: Data Structures & Algorithms 17

insert

* Priority Queue ADT: insert comparable object, deleteMin

* Binary heap data structure: Complete binary tree where each
node has priority value greater than its parent

* O(height-of-tree)=0O(1og n) insert and deleteMin operations
— insert: put at new last position in tree and percolate-up

- deleteMin: remove root, put last element at root and
percolate-down

But: tracking the “last position™ is painful and we can do better

Winter 2014 CSE373: Data Structures & Algorithms 18

Array Representation of Binary Trees

From node i:

left child: i*2
right child: 1*2+1
parent: 1/2

(wasting index O is
convenient for the
index arithmetic)
implicit (array) implementation:

A| B | C | D|E F | G| H | J K | L

0 1 2 3 4 5 6 7 8 9 10 11 12

Winter 2014 CSE373: Data Stru@ures & Algorithms

13

Judging the array implementation

Plusses:
* Non-data space: just index 0 and unused space on right

— In conventional tree representation, one edge per node
(except for root), so n-1 wasted space (like linked lists)

— Array would waste more space if tree were not complete

« Multiplying and dividing by 2 is very fast (shift operations in
hardware)

« Last used position is just index size

Minuses:

« Same might-be-empty or might-get-full problems we saw with
stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”

Winter 2014 CSE373: Data Structures & Algorithms 20

Pseudocode: insert

void insert(int wval) {
if (size==arr.length-1)
resize() ;
size++;
i=percolateUp(size,val) ;
val;

arr[i] =

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

int percolateUp (int hole,
int val) {
while (hole > 1 &&
val < arr[hole/2])
arr[hole] = arr[hole/2];
hole = hole / 2;
}

return hole;

}

10 | 20 | 80 | 40 | 60 | 85

99 | 700 | 50

0 1 2 3 4 5 6

Winter 2014

7 8 9 10 11 12 13

CSE373: Data Structures & Algorithms 21

This pseudocode uses ints. In real use,

Pseudocode: deleteMin you wil have data nodes with priorities.

int deleteMin() { int percolateDown (int hole,
int val) {

if (isEmpty()) throw.. while (2*hole <= size) {

ans = arr[1l]; left = 2*hole;
hole = percolateDown right = left + 1;
(1,arr[size]) ; if (right > size ||

arr[left] < arr[right])

a?r[hole] = arr[size]; target = left;
sSlilze——,; else
return ans; target = right;

} if (arr[target] < val) {
arr [hole] = arr[target];
hole = target;

} else
break;

}

return hole;

}

10 | 20 | 80 | 40 | 60 | 85 | 99 | 700 | 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Winter 2014 CSE373: Data Structures & Algorithms 22

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

Winter 2014 CSE373: Data Structures & Algorithms

23

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

16

Winter 2014

CSE373: Data Structures & Algorithms

24

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

16 | 32

Winter 2014 CSE373: Data Structures & Algorithms

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin

4 | 32 | 16

Winter 2014

CSE373: Data Structures & Algorithms

26

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

Winter 2014 CSE373: Data Structures & Algorithms

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

4 |32] 16 | 67 | 105

Winter 2014 CSE373: Data Structures & Algorithms

Example

1. insert: 16, 32, 4, 67, 105, 43, 2

2. deleteMin
2 | 32 67 | 105 | 43 | 16
2 4 5 6 7
(32) (4)
8D) (43 (8
Winter 2014 CSE373: Data Structures & Algorithms

29

Other operations

« decreaseKey: given pointer to object in priority queue (e.g., its
array index), lower its priority value by p

— Change priority and percolate up

« increaseKey: given pointer to object in priority queue (e.g., its
array index), raise its priority value by p

— Change priority and percolate down

« remove: given pointer to object in priority queue (e.g., its array
index), remove it from the queue

— decreaseKey Wwith p = ©, then deleteMin

Running time for all these operations?

Winter 2014 CSE373: Data Structures & Algorithms 30

Build Heap

« Suppose you have n items to put in a new (empty) priority queue
— Call this operation buildHeap

* N inserts works
— Only choice if ADT doesn’t provide buildHeap explicitly
— O(n logn)

Why would an ADT provide this unnecessary operation?
— Convenience
— Efficiency: an O(n) algorithm called Floyd’s Method

— Common issue in ADT design: how many specialized
operations

Winter 2014 CSE373: Data Structures & Algorithms 31

Floyd’s Method

1. Use nitems to make any complete tree you want
— Thatis, put them in array indices 1,...,n

2. Treat it as a heap and fix the heap-order property

— Bottom-up: leaves are already in heap order, work up
toward the root one level at a time

void buildHeap () {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val) ;
arr[hole] = wval;

}
}

Winter 2014 CSE373: Data Structures & Algorithms 32

Example

In tree form for readability

— Purple for node not less than
descendants

* heap-order problem
— Notice no leaves are purple

— Check/fix each non-leaf
bottom-up (6 steps here)

Winter 2014 CSE373: Data Structures & Algorithms

33

Happens to already be less than children (er, child)

Winter 2014 CSE373: Data Structures & Algorithms 34

Percolate down (notice that moves 1 up)

Winter 2014 CSE373: Data Structures & Algorithms 35

* Another nothing-to-do step

Winter 2014 CSE373: Data Structures & Algorithms 36

» Percolate down as necessary (steps 4a and 4b)

Winter 2014 CSE373: Data Structures & Algorithms 37

Winter 2014 CSE373: Data Structures & Algorithms 38

Winter 2014 CSE373: Data Structures & Algorithms 39

But is it right?

« "Seems to work”
— Let’s prove it restores the heap property (correctness)
— Then let’s prove its running time (efficiency)

void buildHeap () {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = wval;

}
}

Winter 2014 CSE373: Data Structures & Algorithms

40

Correctness

void buildHeap () {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = wval;

}
}

Loop Invariant: For all 9>1, arr[j] is less than its children
« Trueinitially: If § > size/2, then jis aleaf
— Otherwise its left child would be at position > size

» True after one more iteration: loop body and percolateDown
make arr[i] less than children without breaking the property
for any descendants

So after the loop finishes, all nodes are less than their children

Winter 2014 CSE373: Data Structures & Algorithms 41

Efficiency

void buildHeap () {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = wval;

}
}

Easy argument: buildHeap is O(n 1log n) where nis size
« size/2 loop iterations
« Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of
the algorithm...

Winter 2014 CSE373: Data Structures & Algorithms

Efficiency

void buildHeap () {
for(i = size/2; i>0; i--) {

val = arr[i];
hole = percolateDown(i,val);
arr[hole] = wval;

}
}

Better argument. buildHeap is O(n) where nis size

« size/2 total loop iterations: O(n)

» 1/2 the loop iterations percolate at most 1 step

* 1/4 the loop iterations percolate at most 2 steps

* 1/8 the loop iterations percolate at most 3 steps

 ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) < 2 (page 4 of Weiss)
— So at most 2 (size/2) total percolate steps: O(n)

Winter 2014 CSE373: Data Structures & Algorithms 43

Lessons from buildHeap

* Without buildHeap, our ADT already let clients implement their
own in O(n log n) worst case

— Worst case is inserting lower priority values later

« By providing a specialized operation internal to the data structure
(with access to the internal data), we can do O(n) worst case

— Intuition: Most data is near a leaf, so better to percolate down

« Can analyze this algorithm for:
— Correctness:
» Non-trivial inductive proof using loop invariant
— Efficiency:
» First analysis easily proved it was O(n 1og n)
 Tighter analysis shows same algorithm is O(n)

Winter 2014 CSE373: Data Structures & Algorithms 44

Other branching factors

» d-heaps: have d children instead of 2

— Makes heaps shallower, useful for heaps too big for memory

(or cache)

« Homework: Implement a 3-heap
— Just have three children instead of 2
— Still use an array with all positions from 1...heap-size used

2,3,4
5,6,7
8,9,10
11,12,13
14,15,16

o B~ WO DN -

Winter 2014 CSE373: Data Structures & Algorithms

45

What we are skipping

« merge: (given two priority queues, make one priority queue
— How might you merge binary heaps:
* If one heap is much smaller than the other?
* If both are about the same size?

— Different pointer-based data structures for priority queues
support logarithmic time merge operation (impossible with
binary heaps)

» Leftist heaps, skew heaps, binomial queues
» Worse constant factors

* Trade-offs!

Winter 2014 CSE373: Data Structures & Algorithms 46

