

CSE373: Data Structures & Algorithms Lecture 8: Priority Queues

Aaron Bauer Winter 2014

Announcements

- Midterm next week
 - Midterm review TA session on Tuesday
 - Shuo extra office hours 12:30-1:30 Monday
- Homework 1 feedback out soon

Priority Queue ADT

- Stores elements with data and comparable priorities
 - "priority 1" is more important than "priority 4"
- Operations
 - insert
 - deleteMin
 - is_empty

Applications

Like all good ADTs, the priority queue arises often

- Sometimes blatant, sometimes less obvious
- Run multiple programs in the operating system
 - "critical" before "interactive" before "compute-intensive"
 - Maybe let users set priority level
- Treat hospital patients in order of severity (or triage)
- Select print jobs in order of decreasing length?
- Forward network packets in order of urgency
- Select most frequent symbols for data compression (cf. CSE143)
- Sort (first insert all, then repeatedly deleteMin)
 - Much like Homework 1 uses a stack to implement reverse

More applications

- "Greedy" algorithms
 - May see an example when we study graphs in a few weeks
- Discrete event simulation (system simulation, virtual worlds, ...)
 - Each event e happens at some time t, updating system state and generating new events e1, ..., en at times t+t1, ..., t+tn
 - Naïve approach: advance "clock" by 1 unit at a time and process any events that happen then
 - Better:
 - Pending events in a priority queue (priority = event time)
 - Repeatedly: deleteMin and then insert new events
 - Effectively "set clock ahead to next event"

Finding a good data structure

- Will show an efficient, non-obvious data structure for this ADT
 - But first let's analyze some "obvious" ideas for n data items
 - All times worst-case; assume arrays "have room"

data	insert algorithm / tir	ne de	eleteMin algorithr	n / time
unsorted array	add at end	O(1)	search	O(<i>n</i>)
unsorted linked list	add at front	O(1)	search	<i>O</i> (<i>n</i>)
sorted circular array	y search / shift	O(<i>n</i>)	move front	O(1)
sorted linked list	put in right place	O(<i>n</i>)	remove at fron	t O(1)
binary search tree	put in right place	O(<i>n</i>)	leftmost	O(<i>n</i>)
AVL tree	put in right place	O(log /	n) leftmost O	$(\log n)$

More on possibilities

- If priorities are random, binary search tree will likely do better
 - $O(\log n)$ insert and $O(\log n)$ deleteMin on average
- One more idea: if priorities are 0, 1, ..., k can use array of lists
 - insert: add to front of list at arr[priority], O(1)
 - deleteMin: remove from lowest non-empty list O(k)
- We are about to see a data structure called a "binary heap"
 - $O(\log n)$ insert and $O(\log n)$ deleteMin worst-case
 - Possible because we don't support unneeded operations; no need to maintain a full sort
 - Very good constant factors
 - If items arrive in random order, then insert is O(1) on average

Our data structure

A binary min-heap (or just binary heap or just heap) is:

- Structure property: A complete binary tree
- Heap property: The priority of every (non-root) node is greater than the priority of its parent
 - Not a binary search tree

- So:
- Where is the highest-priority item?
- What is the height of a heap with n items?

Operations: basic idea

- findMin: return root.data
- deleteMin:
 - 1. answer = root.data
 - 2. Move right-most node in last row to root to restore structure property
 - 3. "Percolate down" to restore heap property

insert:

- Put new node in next position on bottom row to restore structure property
- 2. "Percolate up" to restore heap property

Overall strategy:

- Preserve structure property
- Break and restore heap property

DeleteMin

1. Delete (and later return) value at root node

2. Restore the Structure Property

- We now have a "hole" at the root
 - Need to fill the hole with another value
- When we are done, the tree will have one less node and must still be complete

3. Restore the Heap Property

Percolate down:

- Keep comparing with both children
- Swap with lesser child and go down one level
- Done if both children are ≥ item or reached a leaf node

Why is this correct? What is the run time?

DeleteMin: Run Time Analysis

- Run time is O(height of heap)
- A heap is a complete binary tree
- Height of a complete binary tree of n nodes?
 - height = $\lfloor \log_2(n) \rfloor$
- Run time of deleteMin is $O(\log n)$

Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct

Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property

Maintain the heap property

Percolate up:

- Put new data in new location
- If parent larger, swap with parent, and continue
- Done if parent ≤ item or reached root

Why is this correct? What is the run time?

Insert: Run Time Analysis

- Like deleteMin, worst-case time proportional to tree height
 - $-O(\log n)$
- But... **deleteMin** needs the "last used" complete-tree position and **insert** needs the "next to use" complete-tree position
 - If "keep a reference to there" then insert and deleteMin have to adjust that reference: O(log n) in worst case
 - Could calculate how to find it in O(log n) from the root given the size of the heap
 - But it's not easy
 - And then insert is always $O(\log n)$, promised O(1) on average (assuming random arrival of items)
- There's a "trick": don't represent complete trees with explicit edges!

Review

- Priority Queue ADT: insert comparable object, deleteMin
- Binary heap data structure: Complete binary tree where each node has priority value greater than its parent
- $O(\text{height-of-tree}) = O(\log n)$ insert and deleteMin operations
 - insert: put at new last position in tree and percolate-up
 - deleteMin: remove root, put last element at root and percolate-down
- But: tracking the "last position" is painful and we can do better

Array Representation of Binary Trees

From node i:

left child: i*2

right child: i*2+1

parent: i/2

(wasting index 0 is convenient for the index arithmetic)

implicit (array) implementation:

	A	В	C	D	E	F	G	Н	I	J	K	L	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Judging the array implementation

Plusses:

- Non-data space: just index 0 and unused space on right
 - In conventional tree representation, one edge per node (except for root), so n-1 wasted space (like linked lists)
 - Array would waste more space if tree were not complete
- Multiplying and dividing by 2 is very fast (shift operations in hardware)
- Last used position is just index size

Minuses:

 Same might-be-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: "this is how people do it"

Pseudocode: insert

This pseudocode uses ints. In real use, you will have data nodes with priorities.

```
void insert(int val) {
  if(size==arr.length-1)
    resize();
  size++;
  i=percolateUp(size,val);
  arr[i] = val;
}
```


	10	20	80	40	60	85	99	700	50				
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Pseudocode: deleteMin

This pseudocode uses ints. In real use, you will have data nodes with priorities.


```
int percolateDown(int hole,
                    int val) {
 while(2*hole <= size) {</pre>
  left = 2*hole;
  right = left + 1;
  if(right > size ||
     arr[left] < arr[right])</pre>
    target = left;
  else
    target = right;
  if(arr[target] < val) {</pre>
    arr[hole] = arr[target];
    hole = target;
  } else
      break;
 return hole;
```


1. insert: 16, 32, 4, 67, 105, 43, 2

1. insert: 16, 32, 4, 67, 105, 43, 2

1. insert: 16, 32, 4, 67, 105, 43, 2

	16	32					
0	1	2	3	4	5	6	7

1. insert: 16, 32, 4, 67, 105, 43, 2

	4	32	16				
0	1	2	3	4	5	6	7

1. insert: 16, 32, 4, 67, 105, 43, 2

	4	32	16	67			
0	1	2	3	4	5	6	7

1. insert: 16, 32, 4, 67, 105, 43, 2

	4	32	16	67	105		
0	1	2	3	4	5	6	7

1. insert: 16, 32, 4, 67, 105, 43, 2

	2	32	4	67	105	43	16
0	1	2	3	4	5	6	7

Other operations

- **decreaseKey**: given pointer to object in priority queue (e.g., its array index), lower its priority value by *p*
 - Change priority and percolate up
- **increaseKey**: given pointer to object in priority queue (e.g., its array index), raise its priority value by *p*
 - Change priority and percolate down
- **remove**: given pointer to object in priority queue (e.g., its array index), remove it from the queue
 - decreaseKey with $p = \infty$, then deleteMin

Running time for all these operations?

Build Heap

- Suppose you have *n* items to put in a new (empty) priority queue
 - Call this operation buildHeap
- n inserts works
 - Only choice if ADT doesn't provide buildHeap explicitly
 - $-O(n \log n)$
- Why would an ADT provide this unnecessary operation?
 - Convenience
 - Efficiency: an O(n) algorithm called Floyd's Method
 - Common issue in ADT design: how many specialized operations

Floyd's Method

- 1. Use *n* items to make any complete tree you want
 - That is, put them in array indices 1,...,n
- 2. Treat it as a heap and fix the heap-order property
 - Bottom-up: leaves are already in heap order, work up toward the root one level at a time

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
}
```

In tree form for readability

Purple for node not less than descendants

heap-order problem

Notice no leaves are purple

 Check/fix each non-leaf bottom-up (6 steps here)

Happens to already be less than children (er, child)

Percolate down (notice that moves 1 up)

Another nothing-to-do step

Percolate down as necessary (steps 4a and 4b)

But is it right?

- "Seems to work"
 - Let's prove it restores the heap property (correctness)
 - Then let's prove its running time (efficiency)

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
}
```

Correctness

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
}
```

Loop Invariant: For all j>i, arr[j] is less than its children

- True initially: If j > size/2, then j is a leaf
 - Otherwise its left child would be at position > size
- True after one more iteration: loop body and percolateDown
 make arr[i] less than children without breaking the property
 for any descendants

So after the loop finishes, all nodes are less than their children

Efficiency

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
}
```

Easy argument: buildHeap is $O(n \log n)$ where n is size

- size/2 loop iterations
- Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise ("tighter") analysis of the algorithm...

Efficiency

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
}
```

Better argument: buildHeap is O(n) where n is size

- size/2 total loop iterations: O(n)
- 1/2 the loop iterations percolate at most 1 step
- 1/4 the loop iterations percolate at most 2 steps
- 1/8 the loop iterations percolate at most 3 steps
- ...
- ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) < 2 (page 4 of Weiss)
 - So at most 2(size/2) total percolate steps: O(n)

Lessons from buildHeap

- Without buildHeap, our ADT already let clients implement their own in O(n log n) worst case
 - Worst case is inserting lower priority values later
- By providing a specialized operation internal to the data structure (with access to the internal data), we can do O(n) worst case
 - Intuition: Most data is near a leaf, so better to percolate down
- Can analyze this algorithm for:
 - Correctness:
 - Non-trivial inductive proof using loop invariant
 - Efficiency:
 - First analysis easily proved it was O(n log n)
 - Tighter analysis shows same algorithm is O(n)

Other branching factors

- d-heaps: have d children instead of 2
 - Makes heaps shallower, useful for heaps too big for memory (or cache)
- Homework: Implement a 3-heap
 - Just have three children instead of 2
 - Still use an array with all positions from 1...heap-size used

Index	Children Indices
1	2,3,4
2	5,6,7
3	8,9,10
4	11,12,13
5	14,15,16

What we are skipping

- merge: given two priority queues, make one priority queue
 - How might you merge binary heaps:
 - If one heap is much smaller than the other?
 - If both are about the same size?
 - Different pointer-based data structures for priority queues support logarithmic time merge operation (impossible with binary heaps)
 - Leftist heaps, skew heaps, binomial queues
 - Worse constant factors
 - Trade-offs!