CSE373: Data Structure & Algorithms

Lecture 23: Programming Languages

Aaron Bauer
Winter 2014

Choosing a Programming Language

* Most of the time you won’t have a choice about what
programming language to use

— Software is already written in a particular language
— Platform requires a specific language (Objective-C for iOS)
— Language required by computational tool (Mathematica, etc.)
« Still important to understand capabilities and limitations of
language
 When you do get to choose, your choice can have tremendous
Impact
— This is despite theoretical equivalence!
— Turing Completeness

Winter 2014 CSE373: Data Structures & Algorithms 2

Turing Completeness

A programming language is said to be Turing complete if it can
compute every computable function

— Recall the Halting Problem as a non-computable function

* |In other words, every Turing complete language can
approximately simulate every other Turing complete language

« Virtually every programming language you might encounter is
Turing complete

— Data or markup languages (e.g. JSON, XML, HTML) are an
exception

« So a choice of language is about how computation is described,
not about what it's possible to compute

Winter 2014 CSE373: Data Structures & Algorithms

What we might want from a Language

« Readable (good syntax, intuitive semantics)
« High-level of abstraction (but still possible to access low level)
« Fast

» Good concurrency and parallelism

« Portable

 Manage side effects

 EXxpressive

 Make dumb things hard

« Secure

* Provably correct

* efc.

Winter 2014 CSE373: Data Structures & Algorithms

Type System

« Collection of rules to assign types to elements of the language
— Values, variables, functions, etc.

 The goal is to reduce bugs
— Logic errors, memory errors (maybe)

« Governed by type theory, an incredibly deep and complex topic

 The type safety of a language is the extent to which its type
system prevents or discourages relevant type errors

— Via type checking
« We'll cover the following questions:
— When does the type system check?
— What does the type system check?
— What do we have to tell the type system?

Winter 2014 CSE373: Data Structures & Algorithms

When Does It Check?

« Static type-checking (check at compile-time)
— Based on source code (program text)

— If program passes, it's guaranteed to satisfy some type-
safety properties on all possible inputs

— Catches bugs early (program doesn’t have to be run)
— Possibly better run-time performance
 Less (or no) checking to do while program runs
» Compiler can optimize based on type
— Inherently conservative
* if <complex test> then <do something> else <type error>
— Not all useful features can be statically checked
 Many languages use both static and dynamic checking

Winter 2014 CSE373: Data Structures & Algorithms

When Does it Check?

* Dynamic type-checking (check at run-time)
— Performed as the program is executing
— Often “tag” objects with their type information
— Look up type information when performing operations
— Possibly faster development time
 edit-compile-test-debug cycle
— Fewer guarantees about program correctness

Winter 2014 CSE373: Data Structures & Algorithms

What Does it Check?

« Nominal type system (name-based type system)
— Equivalence of types based on declared type names
— Objects are only subtypes if explicitly declared so
— Can be statically or dynamically checked
» Structural type system (property-based type system)
— Equivalence of types based on structure/definition

— An element A is compatible with an element B if for each
feature in B’s type, there’s an identical feature in A’s type

* Not symmetric, subtyping handled similarly
* Duck typing
— Type-checking only based on features actually used
— Only generates run-time errors

Winter 2014 CSE373: Data Structures & Algorithms

How Much do we Have to Tell it?

 Type Inference
— Automatically determining the type of an expression
— Programmer can omit type annotations

* Instead of (in C++)
std::vector<int>::const_iterator itr = myvec.cbegin()
use (in C++11)
auto itr = myvec.cbegin()

— Can make programming tasks easier
— Only happens at compile-time
« Otherwise, types must be manifest (always written out)

Winter 2014 CSE373: Data Structures & Algorithms

How Flexible is it?

* Type conversion (typecasting)

— Changing a value from one type to another, potentially
changing the storage requirements

— Reinterpreting the bit pattern of a value from one type to
another

« Can happen explicitly or implicitly

double da 3.3
double db 3.3;
double dc 3.4;
int result = (int)da + (int)db + (int)dc;
int result = da + db + dc;

« Can be done safely (checked) or unsafely (unchecked)
» Objects can be upcast (to supertype) or downcast (to subtype)

Winter 2014 CSE373: Data Structures & Algorithms 10

What Does it All Mean?

Most of these distinctions are not mutually exclusive

— Languages that do static type-checking often have to do
some dynamic type-checking as well

— Some languages use a combination of nominal and duck
typing
« Terminology useful shorthand for describing language
characteristics

 The terms “strong” or “weak” typing are often applied
— These lack any formal definition
— Use more precise, informative descriptors instead
« Languages aren’t necessarily limited to “official” tools

Winter 2014 CSE373: Data Structures & Algorithms 11

Memory Safety

 Memory errors
— Buffer overflow
— Dynamic
— Uninitialized variables
— Out of memory
« Often closely tied to type safety
« Can be checked at compile-time or run-time (or not at all)
 Memory can be managed manually or automatically
— Garbage collection is a type of automatic management
— Some languages make use of both

Winter 2014 CSE373: Data Structures & Algorithms

12

Programming Paradigms

* A programming paradigm describes some fundamental way of
constructing and organizing computer programs

— A programming language supports one or more paradigms
* Imperative

— A program is a series of statements which explicitly change
the program state.

« Declarative

— A program describes what should happen without describing
how it happens

« Functional (can be considered a type of declarative)

— Computation done by evaluation of functions, avoiding state
and mutable data

Object-oriented (as opposed to procedural)
— Computation done via objects (containing data and methods)

Winter 2014 CSE373: Data Structures & Algorithms 13

Language Development

Many attempts to develop a “universal language”
— have failed due to diverse needs

— program size, programmer expertise, program requirements,
program evolution, and personal taste

Languages often change over time
— Generics were added to Java 9 years after initial release
— Take extreme care not to break existing code

One “standard,” many implementations
— Standard defines syntax and semantics

Whether a language will become popular is unpredictable

— Some research suggests things like library availability and
social factors may be more important than language features

Winter 2014 CSE373: Data Structures & Algorithms 14

Java

 Age: 19 years
» Developer: Oracle Corporation
« Paradigms: imperative, object-oriented
« Type system: static, nominative, manifest
* One of the most popular languages in use today
— Lots of great tools and other resources
* Write Once, Run Anywhere approach (via JVM)
— Used to be considered slow, improved by JIT optimization
— Other languages using JVM (Scala, Jython, Clojure, Groovy)
« Can be quite verbose, lacks a number of nice features
« Sees lots of use in large-scale enterprise software
* | would only choose to use Java if given no other options

Winter 2014 CSE373: Data Structures & Algorithms 15

C/C++

« Age: 42/31 years
* Developer: International Organization for Standardization
« Paradigms: imperative, procedural, object-oriented (C++ only)
« Type system: static, nominative, manifest (C++11 has inference)
« Two of the most popular languages in use today
« “Closer to the hardware” than Java
— Used where predictable resource use is necessary
— OS, graphics, games, compilers

 Manual memory management, less protection from memory
errors, sometimes inscrutable compiler errors

— Generally easier to “do dumb things”
* [|'ve only used C/C++ when doing systems programming or
when a library | needed was in C++

Winter 2014 CSE373: Data Structures & Algorithms 16

Jjservevenux:~/test$ g++ —fno—implicit—templates foo.cpp
/tmp/ccCryGMm.o: In function ‘std:: Rb_tree<std::basic_string<char, std::char_ traits<char
>, std::allocator<char> >, std::pair<std::basic_string<char, std::char_traits<char>, std:
tallocator<char> > const, std::basic_string<char, std::char_traits<char>, std::allocator<
char> > >, std:: Selectlst<std::pair<std::basic_string<char, std::char_traits<char>, std:
tallocator<char> > const, std::basic_string<char, std::char_traits<char>, std::allocator<
char> > > >, std::less<std::basic_string<char, std::char_traits<char>, std::allocator<cha
r> > >, std::allocator<std::pair<std::basic_string<char, std::char_traits<char>, std::all
ocator<char> > const, std::basic_string<char, std::char_traits<char>, std::allocator<chan
>>>>>::" Rb_tree()':
foo.cpp:(.gnu.linkonce.t. ZNSt8 Rb treelSsSt4pairlKSsSsESt10 SelectlstIS2 ESt4lessISsESal
S2 _EEDIEv|[std:: Rb_tree<std::basic_string<char, std::char_traits<char>, std::allocator<ch
ar> >, std::pair<std::basic_string<char, std::char_traits<char>, std::allocator<char> > c
onst, std::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::_Sel
ectlst<std::pair<std::basic_string<char, std::char_traits<char>, std::allocator<char> > c
onst, std::basic_string<char, std::char_traits<char>, std::allocator<char> > > >, std::le
ss<std::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocat
or<std::pair<std::basic_string<char, std::char_traits<char>, std::allocator<char> > const
, std::basic_string<char, std::char_traits<char>, std::allocator<char> > > > >::7 Rb_tree
()]4#0x1d): undefined reference to ‘std:: Rb_tree<std::basic_string<char, std::char_traits
<char>, std::allocator<char> >, std::pair<std::basic_string<char, std::char_traits<char=>,
std::allocator<char> > const, std::basic_string<char, std::char_traits<char>, std::allooc
ator<char> > >, std:: _Selectlst<std::pair<std::basic_string<char, std::char_traits<char>,
std::allocator<char> > const, std::basic_string<char, std::char_traits<char>, std::allooc
ator<char> > > >, std::less<std::basic_string<char, std::char_traits<char>, std::allocato
r<char> > >, std::allocator<std::pair<std::basic_string<char, std::char_traits<char>, std
ttallocator<char> > const, std::basic_string<char, std::char_traits<char>, std::allocator
<char> > > > >:: M erase(std:: Rb_tree node<std::pair<std::basic_string<char, std::char_t
raits<char>, std::allocator<char> > const, std::basic_string<char, std::char_traits<char>
, std::allocator<char> > > >")'
collect2: 1d returned 1 exit status
jservevenux:~/test$ |

C#

* Age: 14 years
» Developer: Microsoft
« Paradigms: imperative, object-oriented, functional
« Type system: static, nominative, partially inferred
— optionally dynamic
 Runs on the .NET Framework
— Provides things like garbage collection (similar to the JVM)
* Allows access to system functions with unsafe keyword
» Less verbose than Java, safer than C++
* Primary use is writing Windows applications

* | have really enjoyed programming in C#, but Windows-only can
be a big drawback

Winter 2014 CSE373: Data Structures & Algorithms 18

Haskell

* Age: 24 years
« Developer: many (research language)
« Paradigm: pure functional, lazy evaluation
» Type system: static, inferred
« Pure functional programming is a different way of thinking
— maybe liberating, maybe frustrating
* Functional programming has seen only limited industrial use
« Safer and more transparent than an imperative language
— Same function with same args always returns same value
— Allows for compiler optimizations
« Performance suffers as hardware better suited to mutable data

» | think functional programming is fascinating, and enough
languages include functional elements to make it worth learning

Winter 2014 CSE373: Data Structures & Algorithms 19

Haskell examples

factorial 0 =1
factorial n | n

factorial n pPr

product xs = pro
where
prod []

prod (x:xs)

quicksort :: Ord
quicksort []
quicksort (p:xs)

where
lesser
greater
Winter 2014

> 0 =n * factorial (n - 1)

oduct [1..n]

d xs 1

a a
a = prod xs (a*x)

a => [a] -> [a]

[]

= (quicksort lesser) ++ [p] ++
(quicksort greater)

= filter (< p) xs
= filter (>= p) xs

CSE373: Data Structures & Algorithms

20

SQL (Structured Query Language)

* Age: 40 years
* Developer: ISO
« Paradigms: declarative
 Type system: static
 Used as a database query language
— Declarative paradigm perfect for this application

UPDATE clause —:UPDAT E cou nt r‘y EXprGISSiO" |
SET clause —:SET pOpulatiOn = OpU]-ation + 1 — statement
WHERE clause —:WHERE name = II USA l, ;

Expression

Predicate

« Using SQL is both easy and very powerful

« If you have a lot of data, definitely consider using free database
software like MySQL

Winter 2014 CSE373: Data Structures & Algorithms 21

Python

Age: 23 years

Developer: Python Software Foundation

Paradigm: imperative, object-oriented, functional, procedural
Type system: dynamic, duck

Has a Read-Eval-Print-Loop (REPL)

— Useful for experimenting or one-off tasks
Scripting language

— Supports “scripts,” small programs run without compilation
Often used in web development or scientific/numeric computing
Variables don'’t have types, only values have types
Whitespace has semantic meaning

Lack of variable types and compile-time checks mean more may
be required of documentation and testing

Python is my language of choice for accomplishing small tasks

Winter 2014 CSE373: Data Structures & Algorithms 22

JavaScript

 Age: 19 years
* Developer: Mozilla Foundation
« Paradigm: imperative, object-oriented, functional, procedural
 Type system: dynamic, duck
» Also a scripting language (online/browser REPLs exist)
« Primary client-side language of the web
* Does inheritance through prototypes rather than classes
— Objects inherit by cloning the behavior of existing objects
« Takes a continue at any cost approach
— Shared by many web-focused languages (PHP, HTML)

— Things that would be errors in other languages don’t stop
execution, and are allowed to fail silently

JavaScript is nice for simple things, immediately running on the
web is great, but doing larger/more complex software is terrible

Winter 2014 CSE373: Data Structures & Algorithms 23

PHP

 Age: 19 years

« Developer: The PHP Group

« Paradigm: imperative, object-oriented, functional, procedural

 Type system: dynamic

* Works with Apache (>50% all websites), so very common
server-side language

* Minimal type system, lots of strange behavior, just awful

— If two strings are compared with ==, PHP will silently cast
them to numbers (0e45h7 == 0w2318 evaluates to true)

* I've never used it and | never will (hopefully)

Winter 2014 CSE373: Data Structures & Algorithms 24

LOLCODE

 Age: 7 years
« An example of an esoteric programming language

HAT
CAN HAS STDIO?
PLZ OPEN FILE "LOLCATS.TXT"?

AWSUM THX
VISIBLE FILE
O NOES
INVISIBLE "ERROR!"
KTHXBYE

HAT

CAN HAS STDIO?

IM IN YR LOOP UPPIN YR VAR TIL BOTH SAEM VAR AN 10
VISIBLE SUM OF VAR AN 1

IM OUTTA YR LOOP

KTHXBYE

Winter 2014 CSE373: Data Structures & Algorithms

25

