
CSE373: Data Structure & Algorithms

Lecture 22: Beyond Comparison Sorting

Aaron Bauer
Winter 2014

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Winter 2014 2 CSE373: Data Structures & Algorithms

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

How???
•  Change the model – assume
 more than “compare(a,b)”

BucketSort (a.k.a. BinSort)
•  If all values to be sorted are known to be integers between 1

and K (or any small range):
–  Create an array of size K
–  Put each element in its proper bucket (a.k.a. bin)
–  If data is only integers, no need to store more than a count of

how times that bucket has been used

•  Output result via linear pass through array of buckets

Winter 2014 3 CSE373: Data Structures & Algorithms

count array
1 3
2 1
3 2
4 2
5 3

•  Example:
K=5
input (5,1,3,4,3,2,1,1,5,4,5)

 output: 1,1,1,2,3,3,4,4,5,5,5

Analyzing Bucket Sort

•  Overall: O(n+K)
–  Linear in n, but also linear in K
–  Ω(n log n) lower bound does not apply because this is not a

comparison sort

•  Good when K is smaller (or not much larger) than n
–  We don’t spend time doing comparisons of duplicates

•  Bad when K is much larger than n
–  Wasted space; wasted time during linear O(K) pass

•  For data in addition to integer keys, use list at each bucket

Winter 2014 4 CSE373: Data Structures & Algorithms

Bucket Sort with Data
•  Most real lists aren’t just keys; we have data
•  Each bucket is a list (say, linked list)
•  To add to a bucket, insert in O(1) (at beginning, or keep pointer to

last element)

count array

1

2

3

4

5

•  Example: Movie ratings;
scale 1-5;1=bad, 5=excellent
Input=

 5: Casablanca
 3: Harry Potter movies
 5: Star Wars Original
Trilogy
 1: Rocky V

Rocky V

Harry Potter

Casablanca Star Wars

• Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
• Easy to keep ‘stable’; Casablanca still before Star Wars

Winter 2014 5 CSE373: Data Structures & Algorithms

Radix sort
•  Radix = “the base of a number system”

–  Examples will use 10 because we are used to that
–  In implementations use larger numbers

•  For example, for ASCII strings, might use 128

•  Idea:
–  Bucket sort on one digit at a time

•  Number of buckets = radix
•  Starting with least significant digit
•  Keeping sort stable

–  Do one pass per digit
–  Invariant: After k passes (digits), the last k digits are sorted

•  Aside: Origins go back to the 1890 U.S. census

Winter 2014 6 CSE373: Data Structures & Algorithms

Example

Radix = 10

Input: 478
 537

 9
 721

 3
 38
 143
 67
Winter 2014 7 CSE373: Data Structures & Algorithms

First pass:
 bucket sort by ones digit

1
 721

2 3

 3
143

4 5 6 7

537
 67

8

478
 38

9

 9

0

Order now: 721
 3

 143
 537
 67
 478
 38
 9

Example

Winter 2014 8 CSE373: Data Structures & Algorithms

Second pass:
 stable bucket sort by tens digit

1
 721

2 3

 3
143

4 5 6 7

537
 67

8

478
 38

9

 9

0

Order now: 3
 9

 721
 537

 38
 143

 67
 478

Radix = 10

Order was: 721
 3

 143
 537
 67
 478
 38
 9

1

2

721

3

537
 38

4

143

5 6

 67
7

478

8 9

0

 3
 9

Example

Winter 2014 9 CSE373: Data Structures & Algorithms

Third pass:
 stable bucket sort by 100s digit

Order now: 3
 9

 38
 67

 143
 478

 537
 721

Radix = 10

1
 143

2 3 4

478

5

537

6 7

721

8 9

0

 3
 9
 38
 67 Order was: 3

 9
 721

 537
 38

 143
 67
 478

1

2

721

3

537
 38

4

143

5 6

 67
7

478

8 9

0

 3
 9

Analysis
Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not
–  Example: Strings of English letters up to length 15

•  Run-time proportional to: 15*(52 + n)
•  This is less than n log n only if n > 33,000
•  Of course, cross-over point depends on constant factors of

the implementations
–  And radix sort can have poor locality properties

Winter 2014 10 CSE373: Data Structures & Algorithms

Sorting massive data

•  Need sorting algorithms that minimize disk/tape access time:
–  Quicksort and Heapsort both jump all over the array, leading to

expensive random disk accesses
–  Mergesort scans linearly through arrays, leading to (relatively)

efficient sequential disk access

•  Mergesort is the basis of massive sorting

•  Mergesort can leverage multiple disks

11 CSE373: Data Structures & Algorithms Fall 2013

External Merge Sort

•  Sort 900 MB using 100 MB RAM
–  Read 100 MB of data into memory
–  Sort using conventional method (e.g. quicksort)
–  Write sorted 100MB to temp file
–  Repeat until all data in sorted chunks (900/100 = 9 total)

•  Read first 10 MB of each sorted chuck, merge into remaining
10MB
–  writing and reading as necessary
–  Single merge pass instead of log n
–  Additional pass helpful if data much larger than memory

•  Parallelism and better hardware can improve performance
•  Distribution sorts (similar to bucket sort) are also used

Winter 2014 12 CSE373: Data Structures & Algorithms

Last Slide on Sorting
•  Simple O(n2) sorts can be fastest for small n

–  Selection sort, Insertion sort (latter linear for mostly-sorted)
–  Good for “below a cut-off” to help divide-and-conquer sorts

•  O(n log n) sorts
–  Heap sort, in-place but not stable nor parallelizable
–  Merge sort, not in place but stable and works as external sort
–  Quick sort, in place but not stable and O(n2) in worst-case

•  Often fastest, but depends on costs of comparisons/copies
•  Ω (n log n) is worst-case and average lower-bound for sorting by

comparisons
•  Non-comparison sorts

–  Bucket sort good for small number of possible key values
–  Radix sort uses fewer buckets and more phases

•  Best way to sort? It depends!
Winter 2014 13 CSE373: Data Structures & Algorithms

What is a Programming Language?

•  A set of symbols and associated tools that translate (if
necessary) collections of symbols into instructions to a machine
–  Compiler, execution platform (e.g. Java Virtual Machine)
–  Designed by someone or some people

•  Can have flaws, poor decisions, mistakes
•  Syntax

–  What combinations of symbols are allowed
•  Semantics

–  What those combinations mean
•  These can be defined in different ways for different languages
•  There are a lot of languages

–  Wikipedia lists 675 excluding dialects of BASIC and esoteric
languages

Winter 2014 14 CSE373: Data Structures & Algorithms

Before High-Level Languages

•  Everything done machine code or an assembly language
–  Arithmetic operations (add, multiply, etc.)
–  Memory operations (storing, loading)
–  Control operations (jump, branch)

•  Example: move 8-bit value into a register
–  1101 is binary code for move followed by 3-bit register id
–  1101000 01100001
–  B0 61
–  MOV AL, 61h ; Load AL with 97 decimal (61 hex)

Winter 2014 15 CSE373: Data Structures & Algorithms

A Criminally Brief History of Features

•  First compiled high-level language: 1952 (Autocode)
•  Math notation, subroutines, arrays: 1955 (Fortran)
•  Recursion, higher-order functions,

garbage collection: 1960 (LISP)
•  Nested block structure, lexical scoping: 1960 (ALGOL)
•  Object-orientated programming: 1967 (Simula)
•  Generic programming: 1973 (ML)

Winter 2014 16 CSE373: Data Structures & Algorithms

Language timeline

•  C: 1973
•  C++: 1980
•  MATLAB: 1984
•  Objective-C: 1986
•  Mathematic (Wolfram): 1988
•  Python: 1991
•  Ruby: 1993
•  Java: 1995
•  Javascript: 1995
•  PHP: 1995
•  C#: 2001
•  Scala: 2003

Winter 2014 17 CSE373: Data Structures & Algorithms

What do we want from a Language?

•  Performant

•  Expressive

•  Readable

•  Portable

•  Make dumb things difficult

•  …

Winter 2014 18 CSE373: Data Structures & Algorithms

 Type System

•  Collection of rules to assign types to elements of the language
–  Values, variables, functions, etc.

•  The goal is to reduce bugs
–  Logic errors, memory errors (maybe)

•  Governed by type theory, an incredibly deep and complex topic

•  The type safety of a language is the extent to which its type
system prevents or discourages relevant type errors
–  Via type checking

•  We’ll cover the following questions:
–  When does the type system check?
–  What does the type system check?
–  What do we have to tell the type system?

Winter 2014 19 CSE373: Data Structures & Algorithms

When Does It Check?

•  Static type-checking (check at compile-time)
–  Based on source code (program text)
–  If program passes, it’s guaranteed to satisfy some type-

safety properties on all possible inputs
–  Catches bugs early (program doesn’t have to be run)
–  Possibly better run-time performance

•  Less (or no) checking to do while program runs
•  Compiler can optimize based on type

–  Inherently conservative
•  if <complex test> then <do something> else <type error>

–  Not all useful features can be statically checked
•  Many languages use both static and dynamic checking

Winter 2014 20 CSE373: Data Structures & Algorithms

When Does it Check?

•  Dynamic type-checking (check at run-time)
–  Performed as the program is executing
–  Often “tag” objects with their type information
–  Look up type information when performing operations
–  Possibly faster development time

•  edit-compile-test-debug cycle
–  Fewer guarantees about program correctness

Winter 2014 21 CSE373: Data Structures & Algorithms

What Does it Check?

•  Nominal type system (name-based type system)
–  Equivalence of types based on declared type names
–  Objects are only subtypes if explicitly declared so
–  Can be statically or dynamically checked

•  Structural type system (property-based type system)
–  Equivalence of types based on structure/definition
–  An element A is compatible with an element B if for each

feature in B’s type, there’s an identical feature in A’s type
•  Not symmetric, subtyping handled similarly

•  Duck typing
–  Type-checking only based on features actually used
–  Only generates run-time errors

Winter 2014 22 CSE373: Data Structures & Algorithms

How Much do we Have to Tell it?

•  Type Inference
–  Automatically determining the type of an expression
–  Programmer can omit type annotations

•  Instead of (in C++)
std::vector<int>::const_iterator itr = myvec.cbegin()
use (in C++11)
auto itr = myvec.cbegin()

–  Can make programming tasks easier
–  Only happens at compile-time

•  Otherwise, types must be manifest (always written out)

Winter 2014 23 CSE373: Data Structures & Algorithms

What does it all mean?

•  Most of these distinctions are not mutually exclusive
–  Languages that do static type-checking often have to do

some dynamic type-checking as well
–  Some languages use a combination of nominal and duck

typing
•  Terminology useful shorthand for describing language

characteristics
•  The terms “strong” or “weak” typing are often applied

–  These lack any formal definition
–  Use more precise, informative descriptors instead

•  Next lecture:
–  Overview of other important language attributes
–  Comparisons of common languages

Winter 2014 24 CSE373: Data Structures & Algorithms

