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Announcements 

•  Midterm review tomorrow 
•  Midterm on Wednesday 
•  Partner selection for HW5 due Thursday 
•  Java Collections review on Thursday 
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Midterm Review 

•  Amortized complexity 
–  the logic behind it 
–  the definition and how to use it 
–  the difference vs single operation worst case 

•  Union-find 
–  the basic operations (find and union) 
–  up trees and the array representation 
–  asymptotic performance 
–  the optimizations discussed in lecture 

•  union-by-size 
•  path compression 
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Midterm Review 

•  Hash tables 
–  basic operations (find, insert, and delete) 
–  client vs library responsibilities 
–  hash functions 
–  perfect hashing 

•  Hash collisions 
–  resolution methods (process, relative merits) 

•  separate chaining 
•  probing (linear, quadratic, double hashing) 

–  requirements for success (table size, load factor, etc.) 
–  rehashing 
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Midterm Review 

•  Graphs 
–  terminology (directed, undirected, weighted, connected, etc.) 

•  paths, cycles 
•  trees, DAGs 
•  dense, sparse 

–  notation 
–  data structures (matrix, list) 

•  structure, performance (time and space), relative merits 
–  algorithms 

•  topological sort 
•  paths: BFS (also breadth-first traversal), DFS, Dijkstra’s,  
•  minimum spanning trees: Prim’s, Kruskal’s 
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Motivation 

•  Essential:  knowing available data structures and their trade-offs 
–  You’re taking a whole course on it! J 

•  However, you will rarely if ever re-implement these “in real life” 
–  Provided by libraries 

•  But the key idea of an abstraction arises all the time “in real life” 
–  Clients do not know how it is implemented 
–  Clients do not need to know 
–  Clients cannot “break the abstraction” no matter what they do 
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Interface vs. implementation 

•  Provide a reusable interface without revealing implementation  

•  More difficult than it sounds due to aliasing and field-assignment 
–  Some common pitfalls 

•  So study it in terms of ADTs vs. data structures 
–  Will use priority queues as example in lecture, but any ADT 

would do 
–  Key aspect of grading your homework on graphs 
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Recall the abstraction 
 
Clients: 
“not trusted by ADT 
implementer” 
 
•  Can perform any 

sequence of ADT 
operations 

•  Can do anything 
type-checker allows 
on any accessible 
objects 
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Data structure: 
 

•  Should document how 
operations can be used and 
what is checked (raising 
appropriate exceptions) 
–  E.g., fields not null 

•  If used correctly, correct 
priority queue for any client 

•  Client “cannot see” the 
implementation  
–  E.g., binary min heap 

 
 
new PQ(…) 
 
insert(…) 
 
deleteMin(…) 
 
isEmpty() 



Our example 
•  A priority queue with to-do items, so earlier dates “come first” 

–  Simpler example than using Java generics 
•  Exact method names and behavior not essential to example 
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public class Date { 
   … // some private fields (year, month, day) 
   public int getYear() {…} 
   public void setYear(int y) {…} 
   … // more methods 
}  
public class ToDoItem { 
   … // some private fields (date, description) 
   public void setDate(Date d) {…} 
   public void setDescription(String d) {…} 
   … // more methods 
} 
// continued next slide… 



Our example 
•  A priority queue with to-do items, so earlier dates “come first” 

–  Simpler example than using Java generics 
•  Exact method names and behavior not essential to example 
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public class Date { … } 
public class ToDoItem { … } 
public class ToDoPQ { 
   … // some private fields (array, size, …) 
   public ToDoPQ() {…} 
   void insert(ToDoItem t) {…} 
   ToDoItem deleteMin() {…} 
   boolean isEmpty() {…} 
} 



An obvious mistake 

•  Why we trained you to “mindlessly” make fields private: 
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•  Today’s lecture: private does not solve all your problems! 
–  Upcoming pitfalls can occur even with all private fields 

public class ToDoPQ { 
   … // other fields 
   public ToDoItem[] heap; 
   public ToDoPQ() {…} 
   void insert(ToDoItem t) {…} 
   … 
} 
// client: 
pq = new ToDoPQ(); 
pq.heap = null; 
pq.insert(…); // likely exception 



Less obvious mistakes 

Winter 2014 12 CSE373: Data Structures & Algorithms 

public class ToDoPQ { 
   … // all private fields 
   public ToDoPQ() {…} 
   void insert(ToDoItem i) {…} 
   … 
} 
 
// client: 
ToDoPQ   pq = new ToDoPQ(); 
ToDoItem i  = new ToDoItem(…); 
pq.insert(i); 
i.setDescription(“some different thing”); 
pq.insert(i); // same object after update 
x = deleteMin(); // x’s description??? 
y = deleteMin(); // y’s description??? 
 



Aliasing and mutation 

•  Client was able to update something inside the abstraction 
because client had an alias to it! 
–  It is too hard to reason about and document what should 

happen, so better software designs avoid the issue! 
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pq 
heap: 

size: 1 
… 

date:  
description: “…” 

year: … 
month: … 
          … 

i 



More bad clients 
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ToDoPQ   pq = new ToDoPQ(); 
ToDoItem i1 = new ToDoItem(…); // year 2013 
ToDoItem i2 = new ToDoItem(…); // year 2014 
pq.insert(i1); 
pq.insert(i2); 
i1.setDate(…); // year 2015 
x = deleteMin(); // “wrong” (???) item?  
       // What date does returned item have??? 
 



More bad clients 
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pq 
heap: 

size: 2 
… 

date:  
description: “…” 

year: … 
month: … 
          … i1 

i2 date:  
description: “…” 

year: … 
month: … 
          … 



More bad clients 
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pq = new ToDoPQ(); 
ToDoItem i1 = new ToDoItem(…);  
pq.insert(i1); 
i1.setDate(null);  
ToDoItem i2 = new ToDoItem(…);  
pq.insert(i2); // NullPointerException??? 
 

Get exception inside data-structure code even if insert did a 
careful check that the date in the ToDoItem is not null 

•  Bad client later invalidates the check 



The general fix 

•  Avoid aliases into the internal data (the “red arrows”) by copying 
objects as needed 
–  Do not use the same objects inside and outside the 

abstraction because two sides do not know all mutation 
(field-setting) that might occur 

–  “Copy-in-copy-out” 

•  A first attempt: 
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public class ToDoPQ { 
   …  
   void insert(ToDoItem i) { 
     ToDoItem internal_i =  
       new ToDoItem(i.date,i.description); 
     … // use only the internal object 
   } 
} 



Must copy the object 

•  Notice this version accomplishes nothing 
–  Still the alias to the object we got from the client: 
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public class ToDoPQ { 
   …  
   void insert(ToDoItem i) { 
     ToDoItem internal_i =  
       new ToDoItem(i.date,i.description); 
     … // use only the internal object 
   } 
} 

public class ToDoPQ { 
   …  
   void insert(ToDoItem i) { 
     ToDoItem internal_i = i; 
     … // internal_i refers to same object 
   } 
} 



Copying works… 
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ToDoItem i = new ToDoItem(…); 
pq = new ToDoPQ(); 
pq.insert(i); 
i.setDescription(“some different thing”); 
pq.insert(i);  
x = deleteMin(); 
y = deleteMin(); 
 

pq 

heap: 
size: 1 
… 

date:  
description: “…” 

i 

date:  
description: “…” 

year: … 
month: … 
          … 



Didn’t do enough copying yet 
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Date d = new Date(…) 
ToDoItem i = new ToDoItem(d,“buy beer”); 
pq = new ToDoPQ(); 
pq.insert(i); 
d.setYear(2015); 
… 

pq 

heap: 
size: 1 
… 

date:  
description: “…” 

year: … 
month: … 
          … 

i date:  
description: “…” 



Deep copying 

•  For copying to work fully, usually need to also make copies of all 
objects referred to (and that they refer to and so on…) 
–  All the way down to int, double, String, … 
–  Called deep copying (versus our first attempt shallow-copy) 

•  Rule of thumb: Deep copy of things passed into abstraction 
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public class ToDoPQ { 
   …  
   void insert(ToDoItem i) { 
     ToDoItem internal_i =  
       new ToDoItem(new Date(…), 
                    i.description); 
     … // use only the internal object 
   } 
} 



Constructors take input too 

•  General rule: Do not “trust” data passed to constructors  
–  Check properties and make deep copies 

•  Example: Floyd’s algorithm for buildHeap should: 
–  Check the array (e.g., for null values in fields of objects or 

array positions) 
–  Make a deep copy: new array, new objects 
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public class ToDoPQ { 
  // a second constructor that uses    
  // Floyd’s algorithm, but good design  
  // deep-copies the array (and its contents) 
  void PriorityQueue(ToDoItem[] items) { 
     … 
  } 
} 



That was copy-in, now copy-out… 

•  So we have seen: 
–  Need to deep-copy data passed into abstractions to avoid 

pain and suffering 

•  Next: 
–  Need to deep-copy data passed out of abstractions to avoid 

pain and suffering (unless data is “new” or no longer used in 
abstraction) 

•  Then: 
–  If objects are immutable (no way to update fields or things 

they refer to), then copying unnecessary 
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deleteMin is fine 

•  Does not create a “red arrow” because object returned is no 
longer part of the data structure 

•  Returns an alias to object that was in the heap, but now it is not, 
so conceptual “ownership” “transfers” to the client 
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public class ToDoPQ { 
   …  
   ToDoItem deleteMin() { 
     ToDoItem ans = heap[0]; 
     … // algorithm involving percolateDown 
     return ans; 
} 



getMin needs copying 

•  Uh-oh, creates a “red arrow” 
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public class ToDoPQ { 
  ToDoItem getMin() { 
    int ans = heap[0]; 
    return ans; 
  } 
} 

pq 
heap: 

size: 1 
… 

date:  
description: “…” 

year: … 
month: … 
          … 

ToDoItem i = new ToDoItem(…); 
pq = new ToDoPQ(); 
x = pq.getMin(); 
x.setDate(…);  

x 



The fix 

•  Just like we deep-copy objects from clients before adding to our 
data structure, we should deep-copy parts of our data structure 
and return the copies to clients 

•  Copy-in and copy-out 
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public class ToDoPQ { 
  ToDoItem getMin() { 
    int ans = heap[0]; 
    return new ToDoItem(new Date(…), 
                        ans.description); 
  } 
} 



Less copying 

•  (Deep) copying is one solution to our aliasing problems 

•  Another solution is immutability 
–  Make it so nobody can ever change an object or any other 

objects it can refer to (deeply) 
–  Allows “red arrows”, but immutability makes them harmless 

•  In Java, a final field cannot be updated after an object is 
constructed, so helps ensure immutability 
–  But final is a “shallow” idea and we need “deep” 

immutability 
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This works 
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public class Date { 
   private final int year; 
   private final String month;  
   private final String day; 
}  
public class ToDoItem { 
   private final Date date; 
   private final String description; 
} 
public class ToDoPQ { 
   void insert(ToDoItem i){/*no copy-in needed!*/} 
   ToDoItem getMin(){/*no copy-out needed!*/} 
   … 
} 

Notes: 
•  String objects are immutable in Java 
•  (Using String for month and day is not great style though) 



This does not work 
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public class Date { 
   private final int year; 
   private String month; // not final 
   private final String day; 
   … 
}  
public class ToDoItem { 
   private final Date date;  
   private final String description; 
} 
public class ToDoPQ { 
   void insert(ToDoItem i){/*no copy-in*/} 
   ToDoItem getMin(){/*no copy-out*/} 
   … 
} 

Client could mutate a Date’s month that is in our data structure 
•  So must do entire deep copy of ToDoItem 



final is shallow 
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public class ToDoItem { 
   private final Date date;  
   private final String description; 
} 

•  Here, final means no code can update the date or 
description fields after the object is constructed 

•  So they will always refer to the same Date and String objects 

•  But what if those objects have their contents change 
–  Cannot happen with String objects 
–  For Date objects, depends how we define Date 

•  So final is a “shallow” notion, but we can use it “all the way 
down” to get deep immutability 



This works 
•  When deep-copying, can “stop” when you get to immutable data 

–  Copying immutable data is wasted work, so poor style 
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public class Date { // immutable 
   private final int year; 
   private final String month; 
   private final String day; 
   … 
}  
public class ToDoItem { 
   private Date date;  
   private String description; 
} 
public class ToDoPQ { 
   ToDoItem getMin(){ 
    int ans = heap[0]; 
    return new ToDoItem(ans.date, // okay! 
                        ans.description); 
   } 
} 



What about this? 
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public class Date { // immutable 
   … 
}  
public class ToDoItem { // immutable (unlike last slide) 
   … 
} 
public class ToDoPQ { 
  // a second constructor that uses    
  // Floyd’s algorithm 
  void PriorityQueue(ToDoItem[] items) { 
     // what copying should we do? 
     … 
   } 
} 



What about this? 
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public class Date { // immutable 
   … 
}  
public class ToDoItem { // immutable (unlike last slide) 
   … 
} 
public class ToDoPQ { 
  // a second constructor that uses    
  // Floyd’s algorithm 
  void PriorityQueue(ToDoItem[] items) { 
     // what copying should we do? 
     … 
   } 
} 

Copy the array, but do not copy the ToDoItem or Date objects 



Homework 5 

•  You are implementing a graph abstraction 

•  As provided, Vertex and Edge are immutable 
–  But Collection<Vertex> and Collection<Edge> are not 

•  You might choose to add fields to Vertex or Edge that make 
them not immutable 
–  Leads to more copy-in-copy-out, but that’s fine! 

•  Or you might leave them immutable and keep things like “best-
path-cost-so-far” in another dictionary (e.g., a HashMap) 

 
There is more than one good design, but preserve your abstraction 

–  Great practice with a key concept in software design 
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Randomized Algorithms 

•  Randomized algorithms (or data structures) rely on some source 
of randomness 
–  Usually a random number generator (RNG) 

•  True randomness is impossible on a computer 
–  We will make do with pseudorandom numbers 

•  Suppose we only need to flip a coin 
–  Can we use the lowest it on the system clock? 
–  Does not work well for a sequence of numbers 

•  Simple method: linear congruential generator 
–  Generate a pseudorandom sequence x1,x2,… with 
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xi+1 = AximodM



Linear Congruential Generator 

 
•  Very sensitive to the choice of A and M 

–  Also need to choose x0 (“the seed”) 
•  For M = 11, A = 7, and x0 = 1, we get 

7,5,2,3,10,4,6,9,8,1,7,5,2,...  
•  Sequence has a period of M – 1 
•  Choice of M and A should work to maximize the period 
•  The Java library’s Random uses a slight variation 

•  Using A = 25,214,903,917, C = 13, and B = 48 
–  Returns only the high 32 bits 
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xi+1 = AximodM

xi+1 = (Axi +C) mod 2
B



Making sorted linked list better 
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•  We can search a sorted array in O(log n) using binary search 
•  But no such luck for a sorted linked list 

•  We could, however, add additional links 
–  Every other node links to the node two ahead of it 

–  Go further: every fourth node links to the node four ahead 

10.4 Randomized Algorithms 481

1 /**
2 * Random number class, using a 48-bit
3 * linear congruential generator.
4 */
5 public class Random48
6 {
7 private static final long A = 25_214_903_917L;
8 private static final long B = 48;
9 private static final long C = 11;

10 private static final long M = (1L<<B);
11 private static final long MASK = M-1;
12
13 public Random48( )
14 { state = System.nanoTime( ) & MASK; }
15
16 public int randomInt( )
17 { return next( 32 ); }
18
19 public double random0_1( )
20 { return ( ( (long) ( next( 26 ) ) << 27 ) + next( 27 ) / (double) ( 1L << 53 ); }
21
22 /**
23 * Return specified number of random bits
24 * @param bits number of bits to return
25 * @return specified random bits
26 * @throws IllegalArgumentException if bits is more than 32
27 */
28 private int next( int bits )
29 {
30 if( bits <= 0 || bits > 32 )
31 throw new IllegalArgumentException( );
32
33 state = ( A * state + C ) & MASK;
34
35 return (int) ( state >>> ( B - bits ) );
36 }
37
38 private long state;
39 }

Figure 10.56 48-bit random number generator
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Figure 10.59 Linked list with links to four cells ahead

dropping to a lower link in the same node. Each of these steps consumes at most O(log N)
total time during a search. Notice that the search in this data structure is essentially a binary
search.

The problem with this data structure is that it is much too rigid to allow efficient
insertion. The key to making this data structure usable is to relax the structure conditions
slightly. We define a level k node to be a node that has k links. As Figure 10.60 shows, the ith
link in any level k node (k ≥ i) links to the next node with at least i levels. This is an easy
property to maintain; however, Figure 10.60 shows a more restrictive property than this.
We thus drop the restriction that the ith link links to the node 2i ahead, and we replace it
with the less restrictive condition above.

When it comes time to insert a new element, we allocate a new node for it. We must
at this point decide what level the node should be. Examining Figure 10.60, we find that
roughly half the nodes are level 1 nodes, roughly a quarter are level 2, and, in general,
approximately 1/2i nodes are level i. We choose the level of the node randomly, in accor-
dance with this probability distribution. The easiest way to do this is to flip a coin until
a head occurs and use the total number of flips as the node level. Figure 10.61 shows a
typical skip list.
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Figure 10.61 A skip list
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To the Logical Conclusion 

•  Take this idea to the logical conclusion 
–  Every 2i th node links to the node 2i ahead of it 

–  Number of links doubles, but now only log n nodes are 
visited in a search! 

–  Problem: insert may require completely redoing links 
•  Define a level k node as a node with k links 

–  We require that the ith link in any level k node links to the 
next node with at least i levels 
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Skip List 

•  Now what does insert look like? 
–  Note that in the list with links to nodes 2i ahead, about 1/2 

the nodes are level 1, about a quarter are level 2, … 
–  In general, about 1/2i are level i 

•  When we insert, we’ll choose the level of the new node 
randomly according to this probability 
–  Flip a coin until it comes up heads, the number of flips is the 

level 

•  Operations have expected worst-case running time of O(log n) 
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