CSE373: Data Structures & Algorithms

Lecture 19: Software Design Interlude —
Preserving Abstractions

Aaron Bauer
Winter 2014

Announcements

* Midterm review tomorrow

* Midterm on Wednesday

» Partner selection for HW5S due Thursday
« Java Collections review on Thursday

Winter 2014 CSE373: Data Structures & Algorithms 2

Midterm Review

 Amortized complexity
— the logic behind it
— the definition and how to use it
— the difference vs single operation worst case
* Union-find
— the basic operations (find and union)
— up trees and the array representation
— asymptotic performance
— the optimizations discussed in lecture
* union-by-size
e path compression

Winter 2014 CSE373: Data Structures & Algorithms

Midterm Review

 Hash tables
— basic operations (find, insert, and delete)
— client vs library responsibilities
— hash functions
— perfect hashing
« Hash collisions
— resolution methods (process, relative merits)
« separate chaining
» probing (linear, quadratic, double hashing)
— requirements for success (table size, load factor, etc.)
— rehashing

Winter 2014 CSE373: Data Structures & Algorithms

Midterm Review

 Graphs
— terminology (directed, undirected, weighted, connected, etc.)
* paths, cycles
 trees, DAGs
* dense, sparse
— notation
— data structures (matrix, list)
« structure, performance (time and space), relative merits
— algorithms
 topological sort
» paths: BFS (also breadth-first traversal), DFS, Dijkstra’s,
* minimum spanning trees: Prim’s, Kruskal’s

Winter 2014 CSE373: Data Structures & Algorithms 5

Motivation

« Essential: knowing available data structures and their trade-offs
— You're taking a whole course on it! ©

« However, you will rarely if ever re-implement these “in real life”
— Provided by libraries

« But the key idea of an abstraction arises all the time “in real life”
— Clients do not know how it is implemented
— Clients do not need to know
— Clients cannot “break the abstraction” no matter what they do

Winter 2014 CSE373: Data Structures & Algorithms 6

Interface vs. implementation

* Provide a reusable interface without revealing implementation

* More difficult than it sounds due to aliasing and field-assignment
— Some common pitfalls

« So study it in terms of ADTs vs. data structures

— Will use priority queues as example in lecture, but any ADT
would do

— Key aspect of grading your homework on graphs

Winter 2014 CSE373: Data Structures & Algorithms 7

Recall the abstraction

Clients:

“not trusted by ADT
implementer”

Can perform any
sequence of ADT
operations

Can do anything
type-checker allows
on any accessible
objects

Winter 2014

new PQ(..)
insert(...)
deleteMin(...)

isEmpty ()

Data structure:

e Should document how

operations can be used and
what is checked (raising
appropriate exceptions)

— E.g., fields not null

« |f used correctly, correct
priority queue for any client

e C(Client “cannot see” the
implementation

— E.g., binary min heap

CSE373: Data Structures & Algorithms 8

Our example

» A priority queue with to-do items, so earlier dates “come first”
— Simpler example than using Java generics
« Exact method names and behavior not essential to example

public class Date {
.. // some private fields (year, month, day)
public int getYear() {..}
public void setYear (int y) {..}
.. // more methods
}
public class ToDolItem ({
.. // some private fields (date, description)
public void setDate (Date d) {..}
public void setDescription(String d) {..}
.. // more methods

}

// continued next slide..
Winter 2014 CSE373: Data Structures & Algorithms

Our example

» A priority queue with to-do items, so earlier dates “come first”
— Simpler example than using Java generics
« Exact method names and behavior not essential to example

public class Date { .. }
public class ToDoItem { .. }
public class ToDoPQ {
.. // some private fields (array, size, ..)
public ToDoPQ() {..}
void insert (ToDoItem t) {..}
ToDoItem deleteMin () {..}
boolean isEmpty () {..}

Winter 2014 CSE373: Data Structures & Algorithms 10

An obvious mistake

 Why we trained you to “mindlessly” make fields private:

public class ToDoPQ {
.. // other fields
public ToDoItem[] heap;
public ToDoPQ() {..}
void insert (ToDoItem t) {..}

}
// client:

pg = new ToDoPQ() ;
pg.heap = null;
pg.insert(.); // likely exception

« Today's lecture: private does not solve all your problems!
— Upcoming pitfalls can occur even with all private fields

Winter 2014 CSE373: Data Structures & Algorithms 11

Less obvious mistakes

public class ToDoPQ {
.. // all private fields

public ToDoPQ() {..}
void insert (ToDoItem i) {..}

}

// client:
ToDoPQ pg = new ToDoPQ() ;
ToDoItem i = new ToDoItem(..);

pg.insert (i) ;
i.setDescription(“some different thing”);
pg.insert(i); // same object after update
x = deleteMin(); // x's description???

y = deleteMin(); // y’'s description???

Winter 2014 CSE373: Data Structures & Algorithms

Aliasing and mutation

date:
description: “...”

PO—

« Client was able to update something inside the abstraction
because client had an alias to it!

— It is too hard to reason about and document what should
happen, so better software designs avoid the issue!

Winter 2014 CSE373: Data Structures & Algorithms 13

More bad clients

ToDoPQ pg = new ToDoPQ() ;
ToDoItem il = new ToDoItem(..); // year 2013
ToDoItem i2 = new ToDoItem(..); // year 2014
pg.insert(il) ;
pg.insert(i2) ;
il.setDate(..); // year 2015
x = deleteMin(); // “wrong” (??7?) item?
// What date does returned item have???

Winter 2014 CSE373: Data Structures & Algorithms

14

More bad clients

i2 date:
description: “...”
date:
4 descriptign: “...”
PO—

Winter 2014 CSE373: Data Structures & Algorithms 15

More bad clients

pg = new ToDoPQ() ;

ToDolItem il = new ToDoltem(..);
pg.insert(il) ;

il.setDate (null) ;

ToDoItem i2 = new ToDoItem(..) ;
pg.insert(i2); // NullPointerException???

Get exception inside data-structure code even if insert did a
careful check that the date in the ToDoItem is not null
 Bad client later invalidates the check

Winter 2014 CSE373: Data Structures & Algorithms

16

The general fix

« Avoid aliases into the internal data (the “red arrows™) by copying
objects as needed

— Do not use the same objects inside and outside the
abstraction because two sides do not know all mutation
(field-setting) that might occur

— “Copy-in-copy-out”

« A first attempt: public class ToDoPQ ({

void insert (ToDoItem i) {
ToDoItem internal i =
new ToDoItem(i.date,i.description);
.. // use only the internal object

}

Winter 2014 CSE373: Data Structures & Algorithms 17

Must copy the object

public class ToDoPQ {

void insert (ToDoItem i) {
ToDoItem internal i =
new ToDoItem(i.date,i.description);
.. // use only the internal object

}

* Notice this version accomplishes nothing

— Still the alias to the object we got from the client:
public class ToDoPQ {

void insert (ToDoItem i) {
ToDoItem internal i = i;
.. // internal i refers to same object

}

Winter 2014 CSE373: Data Structures & Algorithms 18

Copying works...

date:
description: “...”

- description: “...”

[—

ToDoItem i = new ToDoItem(..);

pg = new ToDoPQ() ;

pg.insert (i) ;

i.setDescription(“some different thing”) ;
pg.insert (i) ;

x = deleteMin() ;

y = deleteMin() ;

Winter 2014 CSE373: Data Structures & Algorithms 19

Didn’t do enough copying yet

date:

| description: “...”

_—" _description: “...”

pq\

Date d = new Date(..)

ToDoItem i = new ToDolItem(d, “buy beer”);
pg = new ToDoPQ() ;

pg.insert (i) ;

d.setYear (2015) ;

Winter 2014 CSE373: Data Structures & Algorithms 20

Deep copying

* For copying to work fully, usually need to also make copies of all
objects referred to (and that they refer to and so on...)

— All the way down to int, double, String, ...
— Called deep copying (versus our first attempt shallow-copy)

» Rule of thumb: Deep copy of things passed into abstraction

public class ToDoPQ {

void insert (ToDoItem i) {
ToDoItem internal i =
new ToDoItem(new Date(..),
i.description) ;
.. // use only the internal object

}

Winter 2014 CSE373: Data Structures & Algorithms 21

Constructors take input too

» General rule: Do not “trust” data passed to constructors
— Check properties and make deep copies

« Example: Floyd’s algorithm for buildHeap should:

— Check the array (e.g., for null values in fields of objects or
array positions)

— Make a deep copy: new array, new objects

Winter 2014

public class ToDoPQ {
// a second constructor that uses
// Floyd’s algorithm, but good design
// deep-copies the array (and its contents)
void PriorityQueue (ToDoItem[] items) ({

}

CSE373: Data Structures & Algorithms

22

That was copy-in, now copy-out...

« So we have seen:

— Need to deep-copy data passed into abstractions to avoid
pain and suffering

 Next:

— Need to deep-copy data passed out of abstractions to avoid
pain and suffering (unless data is “new” or no longer used in
abstraction)

e Then:

— If objects are immutable (no way to update fields or things
they refer to), then copying unnecessary

Winter 2014 CSE373: Data Structures & Algorithms 23

deleteMin is fine

public class ToDoPQ {

ToDoItem deleteMin () ({
ToDoItem ans = heap[0];
.. // algorithm involving percolateDown
return ans;

}

* Does not create a “red arrow” because object returned is no
longer part of the data structure

* Returns an alias to object that was in the heap, but now it is not,
so conceptual “ownership” “transfers” to the client

Winter 2014 CSE373: Data Structures & Algorithms 24

getMin needs copying

date:
description: “...”

public class ToDoPQ {

ToDoItem getMin() ({

int ans = heap[0];
return ans;

ToDoItem i1 = new ToDolItem(..) ;
pg = new ToDoPQ() ;

x = pqg.getMin() ;
x.setDate(...) ;

}

« Uh-oh, creates a “red arrow’
Winter 2014 CSE373: Data Structures & Algorithms 25

The fix

« Just like we deep-copy objects from clients before adding to our
data structure, we should deep-copy parts of our data structure
and return the copies to clients

« Copy-in and copy-out

public class ToDoPQ {
ToDoItem getMin() ({
int ans = heap[0];
return new ToDoltem(new Date(..),
ans .description) ;

Winter 2014 CSE373: Data Structures & Algorithms 26

Less copying

» (Deep) copying is one solution to our aliasing problems

* Another solution is immutability

— Make it so nobody can ever change an object or any other
objects it can refer to (deeply)

— Allows “red arrows”, but immutability makes them harmless

 InJava, a £inal field cannot be updated after an object is
constructed, so helps ensure immutability

— But £inal is a “shallow” idea and we need “deep”
immutability

Winter 2014 CSE373: Data Structures & Algorithms 27

This works

public class Date {
private final int year;
private final String month;
private final String day;
}
public class ToDoItem {
private final Date date;
private final String description;
}
public class ToDoPQ {
void insert (ToDolItem i) {/*no copy-in needed!*/}
ToDoItem getMin () {/*no copy-out needed!*/}

Notes:
 String objects are immutable in Java
 (Using String for month and day is not great style though)

Winter 2014 CSE373: Data Structures & Algorithms 28

This does not work

public class Date {
private final int year;
private String month; // not final
private final String day;

}
public class ToDolItem ({

private final Date date;
private final String description;

}
public class ToDoPQ {

void insert (ToDoItem i) {/*no copy-in*/}
ToDoItem getMin() {/*no copy-out*/}

}

Client could mutate a Date’s month that is in our data structure
* So must do entire deep copy of ToDoItem

Winter 2014 CSE373: Data Structures & Algorithms 29

final /s shallow

public class ToDoItem ({
private final Date date;
private final String description;

« Here, final means no code can update the date or
description fields after the object is constructed

« So they will always refer to the same Date and String objects

« But what if those objects have their contents change
— Cannot happen with String objects
— For Date objects, depends how we define Date

So £inal is a “shallow” notion, but we can use it “all the way
down” to get deep immutability

Winter 2014 CSE373: Data Structures & Algorithms 30

This works

 When deep-copying, can “stop” when you get to immutable data
— Copying immutable data is wasted work, so poor style

public class Date { // immutable
private final int year;
private final String month;
private final String day;

}
public class ToDolItem ({

private Date date;
private String description;
}
public class ToDoPQ {
ToDoItem getMin () {
int ans = heap[0];
return new ToDolItem(ans.date, // okay!
ans .description) ;

Winter 2 }

What about this?

public class Date { // immutable

}
public class ToDoItem { // immutable (unlike last slide)

}
public class ToDoPQ {

// a second constructor that uses

// Floyd’s algorithm

void PriorityQueue (ToDoItem[] items) ({
// what copying should we do?

Winter 2014 CSE373: Data Structures & Algorithms 32

What about this?

public class Date { // immutable

}
public class ToDoItem { // immutable (unlike last slide)

}
public class ToDoPQ {

// a second constructor that uses

// Floyd’s algorithm

void PriorityQueue (ToDoItem[] items) ({
// what copying should we do?

Copy the array, but do not copy the ToDoItem or Date objects

Winter 2014 CSE373: Data Structures & Algorithms 33

Homework 5

* You are implementing a graph abstraction

 As provided, Vertex and Edge are immutable
— But Collection<Vertex> and Collection<Edge> are not

* You might choose to add fields to Vertex or Edge that make
them not immutable

— Leads to more copy-in-copy-out, but that’s fine!

« Oryou might leave them immutable and keep things like “best-
path-cost-so-far” in another dictionary (e.g., a HashMap)

There is more than one good design, but preserve your abstraction
— Great practice with a key concept in software design

Winter 2014 CSE373: Data Structures & Algorithms 34

Randomized Algorithms

« Randomized algorithms (or data structures) rely on some source
of randomness

— Usually a random number generator (RNG)
 True randomness is impossible on a computer

— We will make do with pseudorandom numbers
« Suppose we only need to flip a coin

— Can we use the lowest it on the system clock?

— Does not work well for a sequence of numbers
« Simple method: linear congruential generator

— Generate a pseudorandom sequence X;,Xy,... With

X, =Ax mod M

Winter 2014 CSE373: Data Structures & Algorithms 35

Linear Congruential Generator
X, =Ax, mod M

* Very sensitive to the choice of A and M
— Also need to choose X, (“the seed”)
 ForM=11,A=7,and x, =1, we get

7,5,2,3,10,4,6,9,8,1,7,5,2,...
 Sequence has a period of M — 1
» Choice of M and A should work to maximize the period
« The Java library’s Random uses a slight variation

B
x,., =(Ax, +C) mod 2
« Using A =25,214,903,917, C =13, and B =48
— Returns only the high 32 bits

Winter 2014 CSE373: Data Structures & Algorithms 36

Making sorted linked list better

 We can search a sorted array in O(log n) using binary search
« But no such luck for a sorted linked list
2 8 10 11 13 19 [+ 20 [22 [{423 [+ 29 [{~

 We could, however, add additional links
— Every other node links to the node two ahead of it

J

— 8 H 11 - 19 22 29 H
2 10 13 ’ 20 23 -

N

— Go further: every fourth node links to the node four ahead

B

8 1 19 22 29 ||
112 1110 1113 1120 1023 B

N

N

Winter 2014 CSE373: Data Structures & Algorithms 37

To the Logical Conclusion

« Take this idea to the logical conclusion
— Every 2'th node links to the node 2' ahead of it

/

u o 22
8 1 19 20 ||
12 1J10 1113 120 1123 [

/

i

i

— Number of links doubles, but now only log n nodes are
visited in a search!

— Problem: insert may require completely redoing links
« Define a level k node as a node with k links

— We require that the th link in any level k node links to the
next node with at least j levels

Winter 2014 CSE373: Data Structures & Algorithms 38

Skip List

« Now what does insert look like?
— Note that in the list with links to nodes 2' ahead, about 1/2

the nodes are level 1, about a quarter are level 2, ...

— In general, about 1/2" are level i

« \When we insert, we’ll choose the level of the new node
randomly according to this probability

— Flip a coin until it comes up heads, the number of flips is the

level

2

10

11

13

E

19

20

22

23

29

L

L

« Operations have expected worst-case running time of O(log n)

Winter 2014

CSE373: Data Structures & Algorithms

39

