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Pseudocode for Kruskal’s 

1.  Sort edges by weight (better: put in min-heap) 
2.  Each node in its own set 
3.  While output size < |V|-1 

–  Consider next smallest edge (u,v) 
–  if find(u) and find(v) indicate u and v are in different 

sets 
•   output (u,v) 
•   union(find(u),find(v)) 

Recall invariant:  
 u and v in same set if and only if connected in output-so-far 
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Example  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G) 

Note: At each step, the union/find sets are the trees in the forest 



Correctness 

Kruskal’s algorithm is clever, simple, and efficient 
–  But does it generate a minimum spanning tree? 
–  How can we prove it? 

First: it generates a spanning tree 
–  Intuition: Graph started connected and we added every edge 

that did not create a cycle 
–  Proof by contradiction: Suppose u and v are disconnected in 

Kruskal’s result.  Then there’s a path from u to v in the initial 
graph with an edge we could add without creating a cycle.  
But Kruskal would have added that edge.  Contradiction. 

Second: There is no spanning tree with lower total cost… 
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The inductive proof set-up 

Let F (stands for “forest”) be the set of edges Kruskal’s has added 
at some point during its execution. 

 
Claim: F is a subset of one or more MSTs for the graph 

–  Therefore, once |F|=|V|-1, we have an MST 
 
Proof: By induction on |F| 
 

  Base case: |F|=0: The empty set is a subset of all MSTs 
 
  Inductive case: |F|=k+1: By induction, before adding the (k+1)th 

edge (call it e), there was some MST T such that F-{e} ⊆ T … 
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Staying a subset of some MST 

Two disjoint cases:  
•  If {e} ⊆ T: Then F ⊆ T and we’re done 
•  Else e forms a cycle with some simple path (call it p) in T 

–  Must be since T is a spanning tree 
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Claim: F is a subset of one or 
more MSTs for the graph 

 
So far:    F-{e} ⊆ T:   



Staying a subset of some MST 

•  There must be an edge e2 on p such that e2 is not in F   
–  Else Kruskal would not have added e 

•  Claim: e2.weight == e.weight 
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Claim: F is a subset of one or 
more MSTs for the graph 

 
So far:    F-{e} ⊆ T and  
     e forms a cycle with p ⊆ T 

e 



Staying a subset of some MST 

•  Claim: e2.weight == e.weight 
–  If e2.weight > e.weight, then T is not an MST because  

 T-{e2}+{e} is a spanning tree with lower cost: contradiction 
–  If e2.weight < e.weight, then Kruskal would have already 

considered e2.  It would have added it since T has no cycles 
and F-{e} ⊆ T.  But e2 is not in F: contradiction  
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Claim: F is a subset of one or 
more MSTs for the graph 

 
So far:    F-{e} ⊆ T  
   e forms a cycle with p ⊆ T  
   e2 on p is not in F 

e 
e2 



Staying a subset of some MST 

•  Claim:  T-{e2}+{e} is an MST 
–  It is a spanning tree because p-{e2}+{e} connects the same 

nodes as p 
–  It is minimal because its cost equals cost of T, an MST 

•  Since F ⊆ T-{e2}+{e},   F is a subset of one or more MSTs  
Done 
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Claim: F is a subset of one or 
more MSTs for the graph 

 
So far:    F-{e} ⊆ T  
   e forms a cycle with p ⊆ T  
   e2 on p is not in F 
   e2.weight == e.weight 
 

e 
e2 
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Network Flow 

•  A directed graph G= (V,E) with capacities on the edges 
–  c(u,v) is the capacity of edge (u,v) 
–  Capacities could represent amount of water, traffic, etc. 

•  “Flow” passes through the graph from s to t 
–  The maximum that can pass along an edge 

is its capacity 
–  Flow must be conserved (same amount 

must leave a node that enters it) 
•  The Maximum Flow Problem 

 Determine the maximum flow 
 that can pass from s to t 
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Motivation 

•  Many networks have “flow” going across them 
–  Water 
–  Electricity 
–  Transportation 
–  … 

•  Energy and Nutrients flow between organisms 
•  Related problems: 

–  Multi-commodity flow 
–  Minimum cost flow 
–  Circulation 
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Will Greedy Work? 
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Ford-Fulkerson: Idea 

•  Repeatedly identify paths from s to t 
–  Called augmenting paths 

•  Send as much flow as possible down the path 
•  Stop when there are no more paths to be found 
•  Amount of flow entering t is the maximum flow 
•  We will need to construct two additional graphs F and R 

–  F will represent the current flow (initially 0) 
–  R (called the residual graph) will show, for each edge, how 

much more flow can be added 
•  Calculated by subtracting current flow from capacity 
•  Edges called residual edges 
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Setup 

        G                          F                            R 
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Example 1 

        G                          F                            R 
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Example 1 

        G                          F                            R 
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Example 1 

        G                          F                            R 
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Example 2 
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Example 2 
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Let the Algorithm Change Its Mind 
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Let the Algorithm Change Its Mind 
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Correctness 

•  Termination 
–  As long as the edge capacities are integers the algorithm will 

terminate 
–  Each augmenting path increases the flow by at least 1 

•  Since we continue until the residual graph has no s-t paths 
remaining, max flow is guaranteed to be found 
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Complexity 

•  An augmenting path can be found in O(|E|) by the unweighted 
shortest path algorithm 

•  Each augmenting path increases the flow by at least 1 
•  Hence, in the worst case, for a max flow of f, the worst-case 

asymptotic running time is O(f*|E|) 
–  A variation on Dijkstra’s algorithm to choose the largest 

capacity augmenting path can improve this 
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Timing 

•  Prefer timing a sequence of instructions 
•  Prefer large and spread out values of n  
•  Beware of initial timings 
•  When timing sequence 

–  For O(log n) operations 
a sequence of m take O(m*log n) 

–  Divide by m to get per-instruction time 
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Some problems are harder than others 

•  Euler circuit (path touching every edge once) 
–  linear time 

•  Hamiltonian cycle (simple cycle containing every vertex) 
–  no known linear time algorithm 

•  Single-source unweighted shortest path 
–  BFS solves it in linear time 

•  Single-source unweighted longest path 
–  no known linear algorithm 

•  In fact, no known polynomial algorithms for variants 
–  best known algorithms are exponential in worst case 
–  belong to a class of problems called NP-complete 
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Polynomial Time 
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Binary Search 

Breadth-First Search 

Dijkstra’s Algorithm 

Sorting Algorithms 

… 

P 



Nondeterministic Polynomial Time 
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What does NP mean? 

•  Any problem “in NP” can be solved in polynomial time 
by a nondeterministic algorithm 
–  A deterministic algorithm must choose one path when 

presented with a choice 
–  A nondeterministic algorithm can choose multiple paths 

•  Any problem “in NP” is one whose solution is verifiable in 
polynomial time 
–  If the solution to a problem is fast to verify, we can 

nondeterministically try all possible solutions quickly 
•  A problem is NP-complete if it’s as hard to solve as any other 

problem in NP 
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P vs NP 
•  It’s currently unknown whether there exist polynomial time 

algorithms for NP-complete problems 
–  That is, does P = NP? 
–  People generally believe P ≠ NP, but no proof yet 

•  One of the major open questions in computer science 
•  Important enough to make its way into popular culture 

–  Travelling Salesman (2012 film) 
–  Episode of Elementary (CBS) 
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Some problems are impossible 

•  Why doesn’t the Java compiler have an infinite loop checker? 
–  It would be very useful 
–  Industry would definitely pay for it 

•  Let’s say we create such a program and call it H 
–  H takes a program P and some input x 
–  H(P,x) returns true if P(x) returns true 
–  H(P,x) returns false if P(x) does not return true 

•  Now we create a program D that uses H as a subroutine 
–  D takes a program P and returns the opposite of H(P,P) 
–  D(P) returns true if P(P) does not return true 
–  D(P) returns false if P(P) returns true 
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Halting Problem 

•  What happens if we run D on itself? 
–  D(D) returns true if D(D) does not return true 
–  D(D) returns false if D(D) returns true 
–  Contradiction! 

•  It turns out a program such as H is not possible :( 
•  Known as the Halting Problem 

–  One example of an undecidable problem 
•  Classic part of CS theory 

–  Originally proved by Alan Turing 
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Algorithm Design Techniques 

•  Greedy 
–  Shortest path, minimum spanning tree, … 

•  Divide and Conquer 
–  Divide the problem into smaller subproblems, 

solve them, and combine into the overall solution 
–  Often done recursively 
–  We’ll see examples when we get to sorting 

•  Dynamic Programming 
–  Brute force through all possible solutions, storing solutions to 

subproblems to avoid repeat computation 
•  Backtracking 

–  A clever form of exhaustive search 
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Dynamic Programming: Idea 

•  Divide problem into many subproblems 
•  An individual subproblem may occur many times 

–  Store the result in a table to enable reuse 
–  Technique called memoization  

•  Dijkstra’s does this! 
–  Breaks the problem of finding all shortest paths into 

subproblems of finding paths to increasingly distant nodes 
–  It finds the shortest path to some intermediate node v 
–  Stores this path for use in computing other shortest paths 

•  If the number of subproblems grows exponentially, a recursive 
solution may have an exponential running time 
–  We can use dynamic programming to help with this 

Winter 2014 33 CSE373: Data Structures & Algorithms 



Fibonacci Sequence: Recursive 

•  Fibonacci sequence 
–  1, 1, 2, 3, 5, 8, 13, … 

•  Recursive solution: 

•  Exponential running time! 
–  A lot of repeated computation 
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fib(int n) { 
 if (n == 1 || n == 2) { 
   return 1 

  } 
  return fib(n – 2) + fib(n – 1) 
} 
   



Repeated computation 
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Fibonacci Sequence: memoized 

 
 
 
 
 
 
 
 
 
 
 
Now each call of fib(x) only gets computed once for each x! 
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fib(int n) { 
  Map results = new Map() 
  results.put(1, 1) 
  results.put(2, 1) 
 return fibHelper(n, results) 

} 
fibHelper(int n, Map results) { 
  if (!results.contains(n)) { 
    results.put(n, fibHelper(n-2)+fibHelper(n-1)) 
  } 
  return results.get(n) 
} 



Spellcheck 

•  When your spellchecker suggests a word, how does it know 
what word to suggest? 
–  May involve statistics about word frequency, context, etc. 
–  Almost certainly includes edit distance 

•  Edit distance is the number of “edits” it takes to turn a word w1 
into a word w2 
–  Edits are insertions, deletions, and substitutions 
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Randomized Algorithms 

•  Randomized algorithms (or data structures) rely on some source 
of randomness 
–  Usually a random number generator (RNG) 

•  True randomness is impossible on a computer 
–  We will make do with pseudorandom numbers 

•  Suppose we only need to flip a coin 
–  Can we use the lowest it on the system clock? 
–  Does not work well for a sequence of numbers 

•  Simple method: linear congruential generator 
–  Generate a pseudorandom sequence x1,x2,… with 
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xi+1 = AximodM



Linear Congruential Generator 

 
•  Very sensitive to the choice of A and M 

–  Also need to choose x0 (“the seed”) 
•  For M = 11, A = 7, and x0 = 1, we get 

7,5,2,3,10,4,6,9,8,1,7,5,2,...  
•  Sequence has a period of M – 1 
•  Choice of M and A should work to maximize the period 
•  The Java library’s Random uses a slight variation 

•  Using A = 25,214,903,917, C = 13, and B = 48 
–  Returns only the high 32 bits 
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xi+1 = AximodM

xi+1 = (Axi +C) mod 2
B



Making sorted linked list better 
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•  We can search a sorted array in O(log n) using binary search 
•  But no such luck for a sorted linked list 

•  We could, however, add additional links 
–  Every other node links to the node two ahead of it 

–  Go further: every fourth node links to the node four ahead 

10.4 Randomized Algorithms 481

1 /**
2 * Random number class, using a 48-bit
3 * linear congruential generator.
4 */
5 public class Random48
6 {
7 private static final long A = 25_214_903_917L;
8 private static final long B = 48;
9 private static final long C = 11;

10 private static final long M = (1L<<B);
11 private static final long MASK = M-1;
12
13 public Random48( )
14 { state = System.nanoTime( ) & MASK; }
15
16 public int randomInt( )
17 { return next( 32 ); }
18
19 public double random0_1( )
20 { return ( ( (long) ( next( 26 ) ) << 27 ) + next( 27 ) / (double) ( 1L << 53 ); }
21
22 /**
23 * Return specified number of random bits
24 * @param bits number of bits to return
25 * @return specified random bits
26 * @throws IllegalArgumentException if bits is more than 32
27 */
28 private int next( int bits )
29 {
30 if( bits <= 0 || bits > 32 )
31 throw new IllegalArgumentException( );
32
33 state = ( A * state + C ) & MASK;
34
35 return (int) ( state >>> ( B - bits ) );
36 }
37
38 private long state;
39 }

Figure 10.56 48-bit random number generator
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Figure 10.59 Linked list with links to four cells ahead

dropping to a lower link in the same node. Each of these steps consumes at most O(log N)
total time during a search. Notice that the search in this data structure is essentially a binary
search.

The problem with this data structure is that it is much too rigid to allow efficient
insertion. The key to making this data structure usable is to relax the structure conditions
slightly. We define a level k node to be a node that has k links. As Figure 10.60 shows, the ith
link in any level k node (k ≥ i) links to the next node with at least i levels. This is an easy
property to maintain; however, Figure 10.60 shows a more restrictive property than this.
We thus drop the restriction that the ith link links to the node 2i ahead, and we replace it
with the less restrictive condition above.

When it comes time to insert a new element, we allocate a new node for it. We must
at this point decide what level the node should be. Examining Figure 10.60, we find that
roughly half the nodes are level 1 nodes, roughly a quarter are level 2, and, in general,
approximately 1/2i nodes are level i. We choose the level of the node randomly, in accor-
dance with this probability distribution. The easiest way to do this is to flip a coin until
a head occurs and use the total number of flips as the node level. Figure 10.61 shows a
typical skip list.
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Figure 10.61 A skip list
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To the Logical Conclusion 

•  Take this idea to the logical conclusion 
–  Every 2i th node links to the node 2i ahead of it 

–  Number of links doubles, but now only log n nodes are 
visited in a search! 

–  Problem: insert may require completely redoing links 
•  Define a level k node as a node with k links 

–  We require that the ith link in any level k node links to the 
next node with at least i levels 
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Skip List 

•  Now what does insert look like? 
–  Note that in the list with links to nodes 2i ahead, about 1/2 

the nodes are level 1, about a quarter are level 2, … 
–  In general, about 1/2i are level i 

•  When we insert, we’ll choose the level of the new node 
randomly according to this probability 
–  Flip a coin until it comes up heads, the number of flips is the 

level 

•  Operations have expected worst-case running time of O(log n) 
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Backtracking 

•  Minimax 
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