
CSE373: Data Structures & Algorithms 
 

Lecture 18: Network Flow,  
NP-Completeness, and More 

Aaron Bauer 
Winter 2014 



Pseudocode for Kruskal’s 

1.  Sort edges by weight (better: put in min-heap) 
2.  Each node in its own set 
3.  While output size < |V|-1 

–  Consider next smallest edge (u,v) 
–  if find(u) and find(v) indicate u and v are in different 

sets 
•   output (u,v) 
•   union(find(u),find(v)) 

Recall invariant:  
 u and v in same set if and only if connected in output-so-far 
 

Winter 2014 2 CSE373: Data Structures & Algorithms 



Example  

Winter 2014 3 CSE373: Data Structures & Algorithms 

A B 

C 
D 

F 

E 

G 

2 

1 
2 5 

1 
1 

1 

2 6 
5 3 

10 

Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G) 

Note: At each step, the union/find sets are the trees in the forest 



Correctness 

Kruskal’s algorithm is clever, simple, and efficient 
–  But does it generate a minimum spanning tree? 
–  How can we prove it? 

First: it generates a spanning tree 
–  Intuition: Graph started connected and we added every edge 

that did not create a cycle 
–  Proof by contradiction: Suppose u and v are disconnected in 

Kruskal’s result.  Then there’s a path from u to v in the initial 
graph with an edge we could add without creating a cycle.  
But Kruskal would have added that edge.  Contradiction. 

Second: There is no spanning tree with lower total cost… 

Winter 2014 4 CSE373: Data Structures & Algorithms 



The inductive proof set-up 

Let F (stands for “forest”) be the set of edges Kruskal’s has added 
at some point during its execution. 

 
Claim: F is a subset of one or more MSTs for the graph 

–  Therefore, once |F|=|V|-1, we have an MST 
 
Proof: By induction on |F| 
 

  Base case: |F|=0: The empty set is a subset of all MSTs 
 
  Inductive case: |F|=k+1: By induction, before adding the (k+1)th 

edge (call it e), there was some MST T such that F-{e} ⊆ T … 

Winter 2014 5 CSE373: Data Structures & Algorithms 



Staying a subset of some MST 

Two disjoint cases:  
•  If {e} ⊆ T: Then F ⊆ T and we’re done 
•  Else e forms a cycle with some simple path (call it p) in T 

–  Must be since T is a spanning tree 
 

Winter 2014 6 CSE373: Data Structures & Algorithms 

Claim: F is a subset of one or 
more MSTs for the graph 

 
So far:    F-{e} ⊆ T:   



Staying a subset of some MST 

•  There must be an edge e2 on p such that e2 is not in F   
–  Else Kruskal would not have added e 

•  Claim: e2.weight == e.weight 

Winter 2014 7 CSE373: Data Structures & Algorithms 

Claim: F is a subset of one or 
more MSTs for the graph 

 
So far:    F-{e} ⊆ T and  
     e forms a cycle with p ⊆ T 

e 



Staying a subset of some MST 

•  Claim: e2.weight == e.weight 
–  If e2.weight > e.weight, then T is not an MST because  

 T-{e2}+{e} is a spanning tree with lower cost: contradiction 
–  If e2.weight < e.weight, then Kruskal would have already 

considered e2.  It would have added it since T has no cycles 
and F-{e} ⊆ T.  But e2 is not in F: contradiction  

Winter 2014 8 CSE373: Data Structures & Algorithms 

Claim: F is a subset of one or 
more MSTs for the graph 

 
So far:    F-{e} ⊆ T  
   e forms a cycle with p ⊆ T  
   e2 on p is not in F 

e 
e2 



Staying a subset of some MST 

•  Claim:  T-{e2}+{e} is an MST 
–  It is a spanning tree because p-{e2}+{e} connects the same 

nodes as p 
–  It is minimal because its cost equals cost of T, an MST 

•  Since F ⊆ T-{e2}+{e},   F is a subset of one or more MSTs  
Done 
Winter 2014 9 CSE373: Data Structures & Algorithms 

Claim: F is a subset of one or 
more MSTs for the graph 

 
So far:    F-{e} ⊆ T  
   e forms a cycle with p ⊆ T  
   e2 on p is not in F 
   e2.weight == e.weight 
 

e 
e2 



s

t

c d

a b

4 2

1

2 4 2

3 3

Network Flow 

•  A directed graph G= (V,E) with capacities on the edges 
–  c(u,v) is the capacity of edge (u,v) 
–  Capacities could represent amount of water, traffic, etc. 

•  “Flow” passes through the graph from s to t 
–  The maximum that can pass along an edge 

is its capacity 
–  Flow must be conserved (same amount 

must leave a node that enters it) 
•  The Maximum Flow Problem 

 Determine the maximum flow 
 that can pass from s to t 

 

Winter 2014 10 CSE373: Data Structures & Algorithms 



Motivation 

•  Many networks have “flow” going across them 
–  Water 
–  Electricity 
–  Transportation 
–  … 

•  Energy and Nutrients flow between organisms 
•  Related problems: 

–  Multi-commodity flow 
–  Minimum cost flow 
–  Circulation 

Winter 2014 11 CSE373: Data Structures & Algorithms 



Will Greedy Work? 

Winter 2014 12 CSE373: Data Structures & Algorithms 

s

t

c d

a b

4 2

1

2 4 2

3 3 No! 



Ford-Fulkerson: Idea 

•  Repeatedly identify paths from s to t 
–  Called augmenting paths 

•  Send as much flow as possible down the path 
•  Stop when there are no more paths to be found 
•  Amount of flow entering t is the maximum flow 
•  We will need to construct two additional graphs F and R 

–  F will represent the current flow (initially 0) 
–  R (called the residual graph) will show, for each edge, how 

much more flow can be added 
•  Calculated by subtracting current flow from capacity 
•  Edges called residual edges 

Winter 2014 13 CSE373: Data Structures & Algorithms 



Setup 

        G                          F                            R 

Winter 2014 14 CSE373: Data Structures & Algorithms 

s

t

c d

a b

4 2

1

2 4 2

3 3

s

t

c d

a b

0 0

0

0 0 0

0 0

s

t

c d

a b

4 2

1

2 4 2

3 3



Example 1 

        G                          F                            R 

Winter 2014 15 CSE373: Data Structures & Algorithms 

s

t

c d

a b

4 2

1

2 4 2

3 3

s

t

c d

a b

0 2

0

0 0 2

0 2

s

t

c d

a b

4

1

2 4

3 1



Example 1 

        G                          F                            R 

Winter 2014 16 CSE373: Data Structures & Algorithms 

s

t

c d

a b

4 2

1

2 4 2

3 3

s

t

c d

a b

2 2

0

2 0 2

2 2

s

t

c d

a b

2

1

4

1 1



Example 1 

        G                          F                            R 

Winter 2014 17 CSE373: Data Structures & Algorithms 

s

t

c d

a b

4 2

1

2 4 2

3 3

s

t

c d

a b

3 2

0

2 1 2

2 3

s

t

c d

a b

1

1

3

1



Example 2 

Winter 2014 18 CSE373: Data Structures & Algorithms 

        G                          F                            R 

s

t

c d

a b

4 2

1

2 4 2

3 3

s

t

c d

a b

0 0

0

0 0 0

0 0

s

t

c d

a b

4 2

1

2 4 2

3 3



Example 2 

Winter 2014 19 CSE373: Data Structures & Algorithms 

        G                          F                            R 

s

t

c d

a b

4 2

1

2 4 2

3 3

s

t

c d

a b

3 0

0

0 3 0

0 3

s

t

c d

a b

1 2

1

2 1 2

3



Let the Algorithm Change Its Mind 

Winter 2014 20 CSE373: Data Structures & Algorithms 

        G                          F                            R 

s

t

c d

a b

4 2

1

2 4 2

3 3

s

t

c d

a b

3 0

0

0 3 0

0 3

s

t

c d

a b

1 2

1

2
1

2

3

3

3

3



Let the Algorithm Change Its Mind 

Winter 2014 21 CSE373: Data Structures & Algorithms 

        G                          F                            R 

s

t

c d

a b

4 2

1

2 4 2

3 3

s

t

c d

a b

3 2

0

2 1 2

2 3

s

t

c d

a b

1 2

1

2
3

2

1

3

1

3
2



Correctness 

•  Termination 
–  As long as the edge capacities are integers the algorithm will 

terminate 
–  Each augmenting path increases the flow by at least 1 

•  Since we continue until the residual graph has no s-t paths 
remaining, max flow is guaranteed to be found 

Winter 2014 22 CSE373: Data Structures & Algorithms 



Complexity 

•  An augmenting path can be found in O(|E|) by the unweighted 
shortest path algorithm 

•  Each augmenting path increases the flow by at least 1 
•  Hence, in the worst case, for a max flow of f, the worst-case 

asymptotic running time is O(f*|E|) 
–  A variation on Dijkstra’s algorithm to choose the largest 

capacity augmenting path can improve this 

Winter 2014 23 CSE373: Data Structures & Algorithms 



Timing 

•  Prefer timing a sequence of instructions 
•  Prefer large and spread out values of n  
•  Beware of initial timings 
•  When timing sequence 

–  For O(log n) operations 
a sequence of m take O(m*log n) 

–  Divide by m to get per-instruction time 

Winter 2014 24 CSE373: Data Structures & Algorithms 



Some problems are harder than others 

•  Euler circuit (path touching every edge once) 
–  linear time 

•  Hamiltonian cycle (simple cycle containing every vertex) 
–  no known linear time algorithm 

•  Single-source unweighted shortest path 
–  BFS solves it in linear time 

•  Single-source unweighted longest path 
–  no known linear algorithm 

•  In fact, no known polynomial algorithms for variants 
–  best known algorithms are exponential in worst case 
–  belong to a class of problems called NP-complete 

Winter 2014 25 CSE373: Data Structures & Algorithms 



Polynomial Time 

Winter 2014 26 CSE373: Data Structures & Algorithms 

Binary Search 

Breadth-First Search 

Dijkstra’s Algorithm 

Sorting Algorithms 

… 

P 



Nondeterministic Polynomial Time 

Winter 2014 27 CSE373: Data Structures & Algorithms 

Binary Search 

Breadth-First Search 

Dijkstra’s Algorithm 

Sorting Algorithms 
… 

P 

NP 
Hamiltonian Cycle 

Traveling Salesperson 

3-Colorability 

… 



What does NP mean? 

•  Any problem “in NP” can be solved in polynomial time 
by a nondeterministic algorithm 
–  A deterministic algorithm must choose one path when 

presented with a choice 
–  A nondeterministic algorithm can choose multiple paths 

•  Any problem “in NP” is one whose solution is verifiable in 
polynomial time 
–  If the solution to a problem is fast to verify, we can 

nondeterministically try all possible solutions quickly 
•  A problem is NP-complete if it’s as hard to solve as any other 

problem in NP 

Winter 2014 28 CSE373: Data Structures & Algorithms 



P vs NP 
•  It’s currently unknown whether there exist polynomial time 

algorithms for NP-complete problems 
–  That is, does P = NP? 
–  People generally believe P ≠ NP, but no proof yet 

•  One of the major open questions in computer science 
•  Important enough to make its way into popular culture 

–  Travelling Salesman (2012 film) 
–  Episode of Elementary (CBS) 

Winter 2014 29 CSE373: Data Structures & Algorithms 



Some problems are impossible 

•  Why doesn’t the Java compiler have an infinite loop checker? 
–  It would be very useful 
–  Industry would definitely pay for it 

•  Let’s say we create such a program and call it H 
–  H takes a program P and some input x 
–  H(P,x) returns true if P(x) returns true 
–  H(P,x) returns false if P(x) does not return true 

•  Now we create a program D that uses H as a subroutine 
–  D takes a program P and returns the opposite of H(P,P) 
–  D(P) returns true if P(P) does not return true 
–  D(P) returns false if P(P) returns true 

Winter 2014 30 CSE373: Data Structures & Algorithms 



Halting Problem 

•  What happens if we run D on itself? 
–  D(D) returns true if D(D) does not return true 
–  D(D) returns false if D(D) returns true 
–  Contradiction! 

•  It turns out a program such as H is not possible :( 
•  Known as the Halting Problem 

–  One example of an undecidable problem 
•  Classic part of CS theory 

–  Originally proved by Alan Turing 

Winter 2014 31 CSE373: Data Structures & Algorithms 



Algorithm Design Techniques 

•  Greedy 
–  Shortest path, minimum spanning tree, … 

•  Divide and Conquer 
–  Divide the problem into smaller subproblems, 

solve them, and combine into the overall solution 
–  Often done recursively 
–  We’ll see examples when we get to sorting 

•  Dynamic Programming 
–  Brute force through all possible solutions, storing solutions to 

subproblems to avoid repeat computation 
•  Backtracking 

–  A clever form of exhaustive search 

Winter 2014 32 CSE373: Data Structures & Algorithms 



Dynamic Programming: Idea 

•  Divide problem into many subproblems 
•  An individual subproblem may occur many times 

–  Store the result in a table to enable reuse 
–  Technique called memoization  

•  Dijkstra’s does this! 
–  Breaks the problem of finding all shortest paths into 

subproblems of finding paths to increasingly distant nodes 
–  It finds the shortest path to some intermediate node v 
–  Stores this path for use in computing other shortest paths 

•  If the number of subproblems grows exponentially, a recursive 
solution may have an exponential running time 
–  We can use dynamic programming to help with this 

Winter 2014 33 CSE373: Data Structures & Algorithms 



Fibonacci Sequence: Recursive 

•  Fibonacci sequence 
–  1, 1, 2, 3, 5, 8, 13, … 

•  Recursive solution: 

•  Exponential running time! 
–  A lot of repeated computation 

Winter 2014 34 CSE373: Data Structures & Algorithms 

fib(int n) { 
 if (n == 1 || n == 2) { 
   return 1 

  } 
  return fib(n – 2) + fib(n – 1) 
} 
   



Repeated computation 

Winter 2014 35 CSE373: Data Structures & Algorithms 

f(7) 

f(5) 

f(3) 

f(4) 

f(1) f(2) 

f(6) 

f(4) f(5) 

f(2) f(3) 

f(3) 

f(4) 
f(1) f(2) 

f(2) f(3) 

f(1) f(2) 

f(2) f(3) 

f(1) f(2) 
f(1) f(2) 



Fibonacci Sequence: memoized 

 
 
 
 
 
 
 
 
 
 
 
Now each call of fib(x) only gets computed once for each x! 

Winter 2014 36 CSE373: Data Structures & Algorithms 

fib(int n) { 
  Map results = new Map() 
  results.put(1, 1) 
  results.put(2, 1) 
 return fibHelper(n, results) 

} 
fibHelper(int n, Map results) { 
  if (!results.contains(n)) { 
    results.put(n, fibHelper(n-2)+fibHelper(n-1)) 
  } 
  return results.get(n) 
} 



Spellcheck 

•  When your spellchecker suggests a word, how does it know 
what word to suggest? 
–  May involve statistics about word frequency, context, etc. 
–  Almost certainly includes edit distance 

•  Edit distance is the number of “edits” it takes to turn a word w1 
into a word w2 
–  Edits are insertions, deletions, and substitutions 

Winter 2014 37 CSE373: Data Structures & Algorithms 



Randomized Algorithms 

•  Randomized algorithms (or data structures) rely on some source 
of randomness 
–  Usually a random number generator (RNG) 

•  True randomness is impossible on a computer 
–  We will make do with pseudorandom numbers 

•  Suppose we only need to flip a coin 
–  Can we use the lowest it on the system clock? 
–  Does not work well for a sequence of numbers 

•  Simple method: linear congruential generator 
–  Generate a pseudorandom sequence x1,x2,… with 

Winter 2014 38 CSE373: Data Structures & Algorithms 

xi+1 = AximodM



Linear Congruential Generator 

 
•  Very sensitive to the choice of A and M 

–  Also need to choose x0 (“the seed”) 
•  For M = 11, A = 7, and x0 = 1, we get 

7,5,2,3,10,4,6,9,8,1,7,5,2,...  
•  Sequence has a period of M – 1 
•  Choice of M and A should work to maximize the period 
•  The Java library’s Random uses a slight variation 

•  Using A = 25,214,903,917, C = 13, and B = 48 
–  Returns only the high 32 bits 

Winter 2014 39 CSE373: Data Structures & Algorithms 

xi+1 = AximodM

xi+1 = (Axi +C) mod 2
B



Making sorted linked list better 

Winter 2014 40 CSE373: Data Structures & Algorithms 

•  We can search a sorted array in O(log n) using binary search 
•  But no such luck for a sorted linked list 

•  We could, however, add additional links 
–  Every other node links to the node two ahead of it 

–  Go further: every fourth node links to the node four ahead 

10.4 Randomized Algorithms 481

1 /**
2 * Random number class, using a 48-bit
3 * linear congruential generator.
4 */
5 public class Random48
6 {
7 private static final long A = 25_214_903_917L;
8 private static final long B = 48;
9 private static final long C = 11;

10 private static final long M = (1L<<B);
11 private static final long MASK = M-1;
12
13 public Random48( )
14 { state = System.nanoTime( ) & MASK; }
15
16 public int randomInt( )
17 { return next( 32 ); }
18
19 public double random0_1( )
20 { return ( ( (long) ( next( 26 ) ) << 27 ) + next( 27 ) / (double) ( 1L << 53 ); }
21
22 /**
23 * Return specified number of random bits
24 * @param bits number of bits to return
25 * @return specified random bits
26 * @throws IllegalArgumentException if bits is more than 32
27 */
28 private int next( int bits )
29 {
30 if( bits <= 0 || bits > 32 )
31 throw new IllegalArgumentException( );
32
33 state = ( A * state + C ) & MASK;
34
35 return (int) ( state >>> ( B - bits ) );
36 }
37
38 private long state;
39 }

Figure 10.56 48-bit random number generator

2 8 10 11 13 19 20 22 23 29

Figure 10.57 Simple linked list482 Chapter 10 Algorithm Design Techniques

2
8

10
11

13
19

20
22

23
29

Figure 10.58 Linked list with links to two cells ahead

2
8

10
11

13
19

20
22

23
29

Figure 10.59 Linked list with links to four cells ahead

dropping to a lower link in the same node. Each of these steps consumes at most O(log N)
total time during a search. Notice that the search in this data structure is essentially a binary
search.

The problem with this data structure is that it is much too rigid to allow efficient
insertion. The key to making this data structure usable is to relax the structure conditions
slightly. We define a level k node to be a node that has k links. As Figure 10.60 shows, the ith
link in any level k node (k ≥ i) links to the next node with at least i levels. This is an easy
property to maintain; however, Figure 10.60 shows a more restrictive property than this.
We thus drop the restriction that the ith link links to the node 2i ahead, and we replace it
with the less restrictive condition above.

When it comes time to insert a new element, we allocate a new node for it. We must
at this point decide what level the node should be. Examining Figure 10.60, we find that
roughly half the nodes are level 1 nodes, roughly a quarter are level 2, and, in general,
approximately 1/2i nodes are level i. We choose the level of the node randomly, in accor-
dance with this probability distribution. The easiest way to do this is to flip a coin until
a head occurs and use the total number of flips as the node level. Figure 10.61 shows a
typical skip list.

2
8

10
11

13
19

20

22

23
29

Figure 10.60 Linked list with links to 2i cells ahead

2
8

10
11

13

19
20

22
23

29

Figure 10.61 A skip list

482 Chapter 10 Algorithm Design Techniques

2
8

10
11

13
19

20
22

23
29

Figure 10.58 Linked list with links to two cells ahead

2
8

10
11

13
19

20
22

23
29

Figure 10.59 Linked list with links to four cells ahead

dropping to a lower link in the same node. Each of these steps consumes at most O(log N)
total time during a search. Notice that the search in this data structure is essentially a binary
search.

The problem with this data structure is that it is much too rigid to allow efficient
insertion. The key to making this data structure usable is to relax the structure conditions
slightly. We define a level k node to be a node that has k links. As Figure 10.60 shows, the ith
link in any level k node (k ≥ i) links to the next node with at least i levels. This is an easy
property to maintain; however, Figure 10.60 shows a more restrictive property than this.
We thus drop the restriction that the ith link links to the node 2i ahead, and we replace it
with the less restrictive condition above.

When it comes time to insert a new element, we allocate a new node for it. We must
at this point decide what level the node should be. Examining Figure 10.60, we find that
roughly half the nodes are level 1 nodes, roughly a quarter are level 2, and, in general,
approximately 1/2i nodes are level i. We choose the level of the node randomly, in accor-
dance with this probability distribution. The easiest way to do this is to flip a coin until
a head occurs and use the total number of flips as the node level. Figure 10.61 shows a
typical skip list.

2
8

10
11

13
19

20

22

23
29

Figure 10.60 Linked list with links to 2i cells ahead

2
8

10
11

13

19
20

22
23

29

Figure 10.61 A skip list



To the Logical Conclusion 

•  Take this idea to the logical conclusion 
–  Every 2i th node links to the node 2i ahead of it 

–  Number of links doubles, but now only log n nodes are 
visited in a search! 

–  Problem: insert may require completely redoing links 
•  Define a level k node as a node with k links 

–  We require that the ith link in any level k node links to the 
next node with at least i levels 

Winter 2014 41 CSE373: Data Structures & Algorithms 

482 Chapter 10 Algorithm Design Techniques

2
8

10
11

13
19

20
22

23
29

Figure 10.58 Linked list with links to two cells ahead

2
8

10
11

13
19

20
22

23
29

Figure 10.59 Linked list with links to four cells ahead

dropping to a lower link in the same node. Each of these steps consumes at most O(log N)
total time during a search. Notice that the search in this data structure is essentially a binary
search.

The problem with this data structure is that it is much too rigid to allow efficient
insertion. The key to making this data structure usable is to relax the structure conditions
slightly. We define a level k node to be a node that has k links. As Figure 10.60 shows, the ith
link in any level k node (k ≥ i) links to the next node with at least i levels. This is an easy
property to maintain; however, Figure 10.60 shows a more restrictive property than this.
We thus drop the restriction that the ith link links to the node 2i ahead, and we replace it
with the less restrictive condition above.

When it comes time to insert a new element, we allocate a new node for it. We must
at this point decide what level the node should be. Examining Figure 10.60, we find that
roughly half the nodes are level 1 nodes, roughly a quarter are level 2, and, in general,
approximately 1/2i nodes are level i. We choose the level of the node randomly, in accor-
dance with this probability distribution. The easiest way to do this is to flip a coin until
a head occurs and use the total number of flips as the node level. Figure 10.61 shows a
typical skip list.

2
8

10
11

13
19

20

22

23
29

Figure 10.60 Linked list with links to 2i cells ahead

2
8

10
11

13

19
20

22
23

29

Figure 10.61 A skip list



Skip List 

•  Now what does insert look like? 
–  Note that in the list with links to nodes 2i ahead, about 1/2 

the nodes are level 1, about a quarter are level 2, … 
–  In general, about 1/2i are level i 

•  When we insert, we’ll choose the level of the new node 
randomly according to this probability 
–  Flip a coin until it comes up heads, the number of flips is the 

level 

•  Operations have expected worst-case running time of O(log n) 

Winter 2014 42 CSE373: Data Structures & Algorithms 

482 Chapter 10 Algorithm Design Techniques

2
8

10
11

13
19

20
22

23
29

Figure 10.58 Linked list with links to two cells ahead

2
8

10
11

13
19

20
22

23
29

Figure 10.59 Linked list with links to four cells ahead

dropping to a lower link in the same node. Each of these steps consumes at most O(log N)
total time during a search. Notice that the search in this data structure is essentially a binary
search.

The problem with this data structure is that it is much too rigid to allow efficient
insertion. The key to making this data structure usable is to relax the structure conditions
slightly. We define a level k node to be a node that has k links. As Figure 10.60 shows, the ith
link in any level k node (k ≥ i) links to the next node with at least i levels. This is an easy
property to maintain; however, Figure 10.60 shows a more restrictive property than this.
We thus drop the restriction that the ith link links to the node 2i ahead, and we replace it
with the less restrictive condition above.

When it comes time to insert a new element, we allocate a new node for it. We must
at this point decide what level the node should be. Examining Figure 10.60, we find that
roughly half the nodes are level 1 nodes, roughly a quarter are level 2, and, in general,
approximately 1/2i nodes are level i. We choose the level of the node randomly, in accor-
dance with this probability distribution. The easiest way to do this is to flip a coin until
a head occurs and use the total number of flips as the node level. Figure 10.61 shows a
typical skip list.

2
8

10
11

13
19

20

22

23
29

Figure 10.60 Linked list with links to 2i cells ahead

2
8

10
11

13

19
20

22
23

29

Figure 10.61 A skip list



Backtracking 

•  Minimax 

Winter 2014 43 CSE373: Data Structures & Algorithms 


