CSE373: Data Structures & Algorithms
Lecture 16: Shortest Paths

Aaron Bauer
Winter 2014
Announcements

• No class on Monday (Presidents’ Day)
• HW3 feedback before next lecture
• Midterm 2 will cover material up through next Wednesday
• Midterm info slightly out of date on web page, up-to-date soon
Single source shortest paths

- Done: BFS to find the minimum path length from \(v \) to \(u \) in \(O(|E|+|V|) \)

- Actually, can find the minimum path length from \(v \) to every node
 - Still \(O(|E|+|V|) \)
 - No faster way for a “distinguished” destination in the worst-case

- Now: Weighted graphs

 Given a weighted graph and node \(v \), find the minimum-cost path from \(v \) to every node

- As before, asymptotically no harder than for one destination
- Unlike before, BFS will not work
Applications

- Driving directions
- Cheap flight itineraries
- Network routing
- Critical paths in project management
Not as easy

Why BFS won’t work: Shortest path may not have the fewest edges
 – Annoying when this happens with costs of flights

We will assume there are no negative weights
• Problem is ill-defined if there are negative-cost cycles
• Today’s algorithm is wrong if edges can be negative
 – There are other, slower (but not terrible) algorithms
Dijkstra

• Algorithm named after its inventor Edsger Dijkstra (1930-2002)
 – Truly one of the “founders” of computer science; this is just one of his many contributions
 – Many people have a favorite Dijkstra story, even if they never met him
 – My favorite quotation: “computer science is no more about computers than astronomy is about telescopes”
Dijkstra's algorithm

- The idea: reminiscent of BFS, but adapted to handle weights
 - Grow the set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a "best distance so far"
 - A priority queue will turn out to be useful for efficiency
Dijkstra’s Algorithm: Idea

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
 - Pick closest unknown vertex v
 - Add it to the “cloud” of known vertices
 - Update distances for nodes with edges from v
- That’s it! (But we need to prove it produces correct answers)
The Algorithm

1. For each node v, set $v\cdot cost = \infty$ and $v\cdot known = false$
2. Set $source\cdot cost = 0$
3. While there are unknown nodes in the graph
 a) Select the unknown node v with lowest cost
 b) Mark v as known
 c) For each edge (v,u) with weight w,

 $c1 = v\cdot cost + w$ // cost of best path through v to u
 $c2 = u\cdot cost$ // cost of best path to u previously known

 if($c1 < c2$){ // if the path through v is better
 $u\cdot cost = c1$
 $u\cdot path = v$ // for computing actual paths
 }
Important features

• When a vertex is marked known, the cost of the shortest path to
 that node is known
 – The path is also known by following back-pointers

• While a vertex is still not known, another shorter path to it might
 still be found
Example #1

Order Added to Known Set:

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:

A

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>≤ 2</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>≤ 1</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>≤ 4</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:

A, C

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>≤ 2</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>≤ 4</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>≤ 12</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:

A, C, B

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>≤ 4</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>≤ 12</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>≤ 4</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:
A, C, B, D
Example #1

Order Added to Known Set:

A, C, B, D, F

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤ 12</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>≤ 7</td>
<td>F</td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:

A, C, B, D, F, H
Example #1

Order Added to Known Set:
A, C, B, D, F, H, G

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤ 11</td>
<td>G</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>8</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:

A, C, B, D, F, H, G, E

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>11</td>
<td>G</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>8</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>
Features

- When a vertex is marked known, the cost of the shortest path to that node is known
 - The path is also known by following back-pointers

- While a vertex is still not known, another shorter path to it might still be found

Note: The “Order Added to Known Set” is not important
- A detail about how the algorithm works (client doesn’t care)
- Not used by the algorithm (implementation doesn’t care)
- It is sorted by path-cost, resolving ties in some way
 - Helps give intuition of why the algorithm works
Interpreting the Results

- Now that we’re done, how do we get the path from, say, A to E?

Order Added to Known Set:
A, C, B, D, F, H, G, E
Stopping Short

- How would this have worked differently if we were only interested in:
 - The path from A to G?
 - The path from A to E?

Order Added to Known Set:

A, C, B, D, F, H, G, E

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>11</td>
<td>G</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>8</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:
A

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>≤ 2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>≤ 1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>??</td>
<td></td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:

A, D

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>≤ 6</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>≤ 2</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>≤ 2</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>≤ 7</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td>≤ 6</td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:

A, D, C

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>≤ 6</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>≤ 2</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>≤ 4</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>≤ 6</td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:
A, D, C, E

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>≤ 3</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>≤ 4</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>≤ 6</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:
A, D, C, E, B

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>≤ 4</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>≤ 6</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:

A, D, C, E, B, F

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>≤ 6</td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:
A, D, C, E, B, F, G

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>6</td>
<td>D</td>
</tr>
</tbody>
</table>
Example #3

How will the best-cost-so-far for Y proceed?

Is this expensive?
Example #3

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, …

Is this expensive?
Example #3

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, …

Is this expensive? No, each edge is processed only once
A Greedy Algorithm

- Dijkstra’s algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges

- An example of a greedy algorithm:
 - At each step, always does what seems best at that step
 - A locally optimal step, not necessarily globally optimal
 - Once a vertex is known, it is not revisited
 - Turns out to be globally optimal
Where are We?

- Had a problem: Compute shortest paths in a weighted graph with no negative weights

- Learned an algorithm: Dijkstra’s algorithm

- What should we do after learning an algorithm?
 - Prove it is correct
 - Not obvious!
 - We will sketch the key ideas
 - Analyze its efficiency
 - Will do better by using a data structure we learned earlier!
Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node “known”, then by induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t discover a shorter path later!

- This holds only because Dijkstra’s algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction…
Correctness: The Cloud (Rough Sketch)

Suppose \(v \) is the next node to be marked known (“added to the cloud”)

- The **best-known path** to \(v \) must have only nodes “in the cloud”
 - Else we would have picked a node closer to the cloud than \(v \)
- Suppose the **actual shortest path** to \(v \) is different
 - It won’t use only cloud nodes, or we would know about it
 - So it must use non-cloud nodes. Let \(w \) be the *first* non-cloud node on this path. The part of the path up to \(w \) is already known and must be shorter than the best-known path to \(v \). So \(v \) would not have been picked. Contradiction.
Efficiency, first approach

Use pseudocode to determine asymptotic run-time
- Notice each edge is processed only once

```plaintext
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```
Efficiency, first approach

Use pseudocode to determine asymptotic run-time
 – Notice each edge is processed only once

```plaintext
dijkstra(Graph G, Node start) {
    for each node: x.cost=∞, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```

$O(|V|)$
Efficiency, first approach

Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.path = b
 }
 }
}
Efficiency, first approach

Use pseudocode to determine asymptotic run-time
 – Notice each edge is processed only once

```plaintext
dijkstra(Graph G, Node start) {
    for each node: x.cost=\infty, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```

$O(|V|)$

$O(|V|^2)$

$O(|E|)$
Efficiency, first approach

Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once

```java
dijkstra(Graph G, Node start) {
    for each node: x.cost=Infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```

- \(O(|V|)\)
- \(O(|V|^2)\)
- \(O(|E|)\)
- \(O(|V|^2)\)
Improving asymptotic running time

• So far: $O(|V|^2)$

• We had a similar “problem” with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 – We solved it with a queue of zero-degree nodes
 – But here we need the lowest-cost node and costs can change as we process edges

• Solution?
Improving (?) asymptotic running time

• So far: $O(|V|^2)$

• We had a similar “problem” with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 – We solved it with a queue of zero-degree nodes
 – But here we need the lowest-cost node and costs can change as we process edges

• Solution?
 – A priority queue holding all unknown nodes, sorted by cost
 – But must support decreaseKey operation
 • Must maintain a reference from each node to its current position in the priority queue
 • Conceptually simple, but can be a pain to code up
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=\infty, x.known=\text{false}
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = \text{true}
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a, "new cost - old cost")
 a.path = b
 }
 }
}
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a,"new cost - old cost")
 a.path = b
 }
 }
}
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a, "new cost - old cost")
 a.path = b
 }
 }
}
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost = infinity, x.known = false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a, “new cost - old cost”)
 a.path = b
 }
 }
}
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=\text{infinity}, x.known=\text{false}
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost) {
 decreaseKey(a, "new cost – old cost")
 a.path = b
 }
 }
}
Dense vs. sparse again

- First approach: $O(|V|^2)$
- Second approach: $O(|V|\log|V|+|E|\log|V|)$
- So which is better?
 - Sparse: $O(|V|\log|V|+|E|\log|V|)$ (if $|E| > |V|$, then $O(|E|\log|V|)$)
 - Dense: $O(|V|^2)$
- But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for “normal graphs”, we might call `decreaseKey` rarely (or not percolate far), making $|E|\log|V|$ more like $|E|$
Spanning Trees

- A simple problem: Given a connected undirected graph $G=(V,E)$, find a minimal subset of edges such that G is still connected
 - A graph $G_2=(V,E_2)$ such that G_2 is connected and removing any edge from E_2 makes G_2 disconnected
Observations

1. Any solution to this problem is a tree
 - Recall a tree does not need a root; just means acyclic
 - For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected
 - So $|E| \geq |V|-1$

4. A tree with $|V|$ nodes has $|V|-1$ edges
 - So every solution to the spanning tree problem has $|V|-1$ edges
Motivation

A spanning tree connects all the nodes with as few edges as possible

• Example: A “phone tree” so everybody gets the message and no unnecessary calls get made
 – Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and we want a tree of least total cost

• Example: Electrical wiring for a house or clock wires on a chip
• Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem
 – Will do that next, after intuition from the simpler case
Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree

2. Iterate through edges; add to output any edge that does not create a cycle