

CSE373: Data Structures & Algorithms Lecture 16: Shortest Paths

Aaron Bauer Winter 2014

Announcements

- No class on Monday (Presidents' Day)
- HW3 feedback before next lecture
- Midterm 2 will cover material up through next Wednesday
- Midterm info slightly out of date on web page, up-to-date soon

Single source shortest paths

- Done: BFS to find the minimum path length from v to u in O(|E|+|V|)
- Actually, can find the minimum path length from v to every node
 - Still O(|E|+|V|)
 - No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs

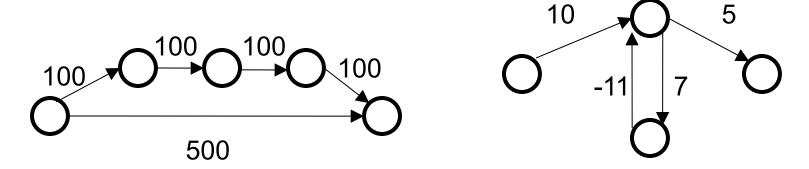
Given a weighted graph and node **v**, find the minimum-cost path from **v** to every node

- As before, asymptotically no harder than for one destination
- Unlike before, BFS will not work

Applications

- Driving directions
- Cheap flight itineraries
- Network routing
- Critical paths in project management

Not as easy



Why BFS won't work: Shortest path may not have the fewest edges

Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if edges can be negative
 - There are other, slower (but not terrible) algorithms

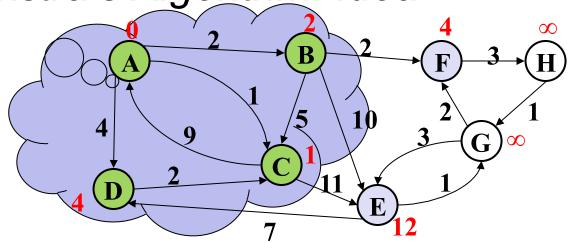
Dijkstra

- Algorithm named after its inventor Edsger Dijkstra (1930-2002)
 - Truly one of the "founders" of computer science;
 this is just one of his many contributions
 - Many people have a favorite Dijkstra story, even if they never met him
 - My favorite quotation: "computer science is no more about computers than astronomy is about telescopes"

Dijkstra's algorithm

- The idea: reminiscent of BFS, but adapted to handle weights
 - Grow the set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a "best distance so far"
 - A priority queue will turn out to be useful for efficiency

Dijkstra's Algorithm: Idea



- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
 - Pick closest unknown vertex v
 - Add it to the "cloud" of known vertices
 - Update distances for nodes with edges from v
- That's it! (But we need to prove it produces correct answers)

The Algorithm

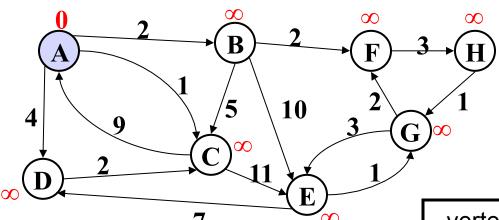
- 1. For each node \mathbf{v} , set $\mathbf{v}.\mathsf{cost} = \infty$ and $\mathbf{v}.\mathsf{known} = \mathsf{false}$
- 2. Set source.cost = 0
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node v with lowest cost
 - b) Mark v as known
 - c) For each edge (v,u) with weight w,

```
c1 = v.cost + w// cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2) { // if the path through v is better
    u.cost = c1
    u.path = v // for computing actual paths
}</pre>
```

Important features

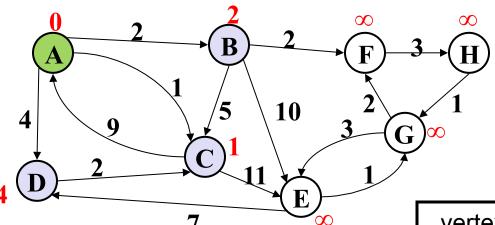
- When a vertex is marked known, the cost of the shortest path to that node is known
 - The path is also known by following back-pointers

 While a vertex is still not known, another shorter path to it might still be found



Order Added to Known Set:

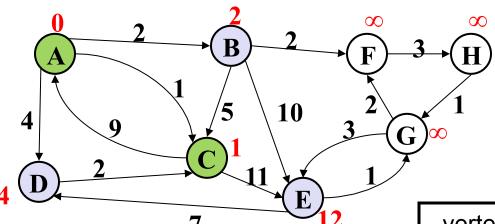
vertex	known?	cost	path
Α		0	
В		??	
С		??	
D		??	
Е		??	
F		??	
G		??	
Н		??	



Order Added to Known Set:

A

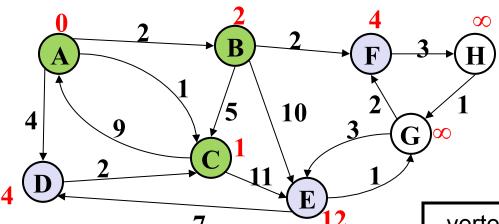
vertex	known?	cost	path
Α	Y	0	
В		≤ 2	Α
С		≤ 1	Α
D		≤ 4	Α
Е		??	
F		??	
G		??	
Н		??	



Order Added to Known Set:

A, C

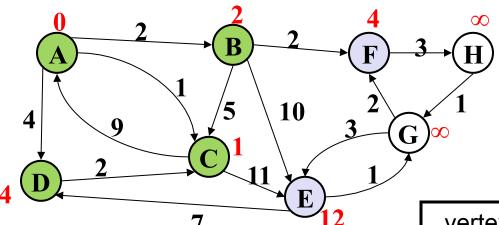
vertex	known?	cost	path
Α	Y	0	
В		≤ 2	А
С	Y	1	Α
D		≤ 4	Α
Е		≤ 12	С
F		??	
G		??	
Н		??	



Order Added to Known Set:

A, C, B

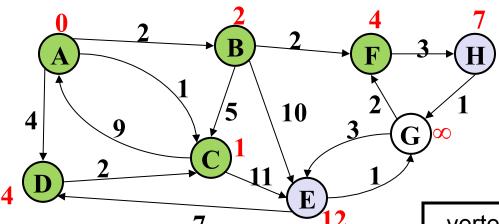
vertex	known?	cost	path
Α	Υ	0	
В	Y	2	Α
С	Y	1	Α
D		≤ 4	Α
Е		≤ 12	С
F		≤ 4	В
G		??	
Н		??	



Order Added to Known Set:

A, C, B, D

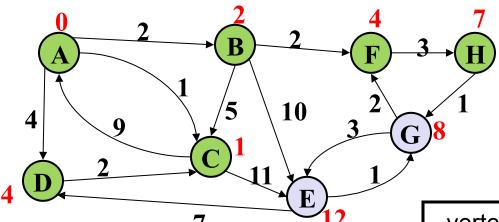
vertex	known?	cost	path
Α	Υ	0	
В	Y	2	Α
С	Y	1	Α
D	Y	4	Α
Е		≤ 12	С
F		≤ 4	В
G		??	
Н		??	



Order Added to Known Set:

A, C, B, D, F

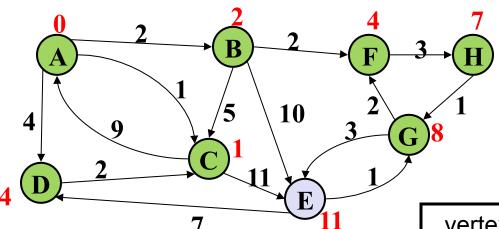
vertex	known?	cost	path
Α	Y	0	
В	Y	2	Α
С	Y	1	Α
D	Y	4	Α
Е		≤ 12	С
F	Y	4	В
G		??	
Н		≤ 7	F



Order Added to Known Set:

A, C, B, D, F, H

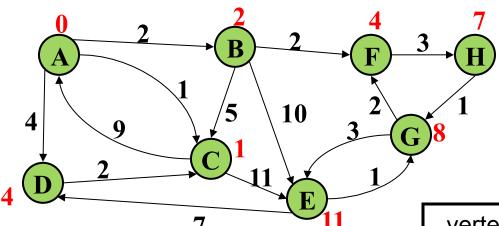
vertex	known?	cost	path
Α	Y	0	
В	Y	2	Α
С	Y	1	Α
D	Y	4	Α
Е		≤ 12	С
F	Y	4	В
G		≤ 8	Н
Н	Y	7	F



Order Added to Known Set:

A, C, B, D, F, H, G

vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	Α
E		≤ 11	G
F	Υ	4	В
G	Υ	8	Н
Н	Υ	7	F



Order Added to Known Set:

A, C, B, D, F, H, G, E

vertex	known?	cost	path
Α	Y	0	
В	Y	2	Α
С	Υ	1	Α
D	Y	4	Α
E	Y	11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

Features

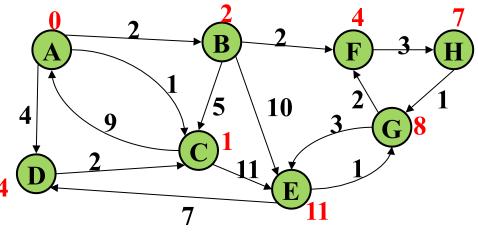
- When a vertex is marked known,
 the cost of the shortest path to that node is known
 - The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Note: The "Order Added to Known Set" is not important

- A detail about how the algorithm works (client doesn't care)
- Not used by the algorithm (implementation doesn't care)
- It is sorted by path-cost, resolving ties in some way
 - Helps give intuition of why the algorithm works

Interpreting the Results

Now that we're done, how do we get the path from, say, A to E?



Order Added to Known Set:

A, C, B, D, F, H, G, E

known?	cost	path
Y	0	
Y	2	Α
Y	1	Α
Y	4	Α
Υ	11	G
Υ	4	В
Y	8	Н
Y	7	F
	Y Y Y Y Y Y	Y 0 Y 2 Y 1 Y 4 Y 11 Y 4 Y 8

Stopping Short

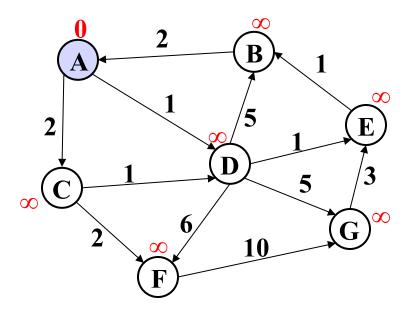
- How would this have worked differently if we were only interested in:
 - The path from A to G?
 - The path from A to E?



Order Added to Known Set:

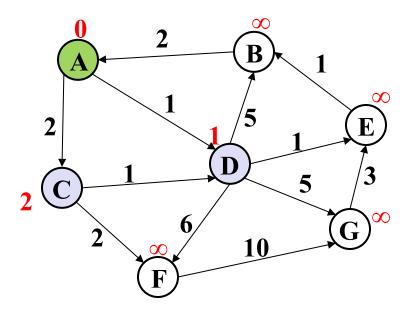
A, C, B, D, F, H, G, E

vertex	known?	cost	path
Α	Υ	0	
В	Y	2	Α
С	Υ	1	Α
D	Y	4	Α
E	Y	11	G
F	Υ	4	В
G	Y	8	Н
Н	Y	7	F



Order Added to Known Set:

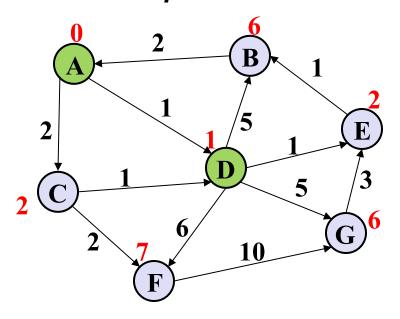
vertex	known?	cost	path
Α		0	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	



Order Added to Known Set:

A

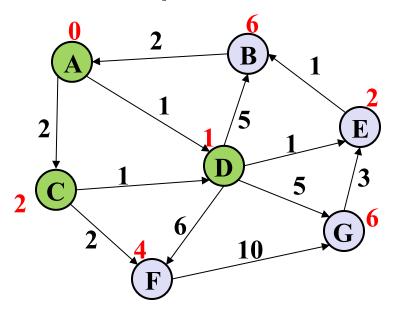
vertex	known?	cost	path
Α	Υ	0	
В		??	
С		≤ 2	Α
D		≤ 1	Α
Е		??	
F		??	
G		??	



Order Added to Known Set:

A, D

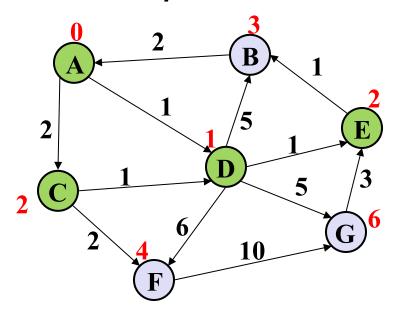
vertex	known?	cost	path
Α	Υ	0	
В		≤ 6	D
С		≤ 2	Α
D	Y	1	Α
Е		≤ 2	D
F		≤ 7	D
G		≤ 6	D



Order Added to Known Set:

A, D, C

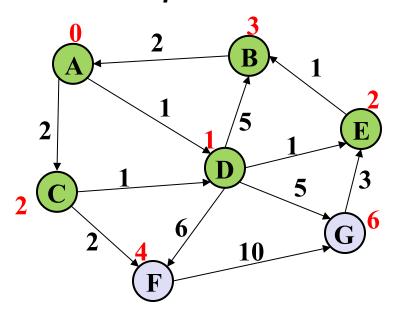
vertex	known?	cost	path
Α	Y	0	
В		≤ 6	D
С	Y	2	Α
D	Y	1	Α
Е		≤ 2	D
F		≤ 4	С
G		≤ 6	D



Order Added to Known Set:

A, D, C, E

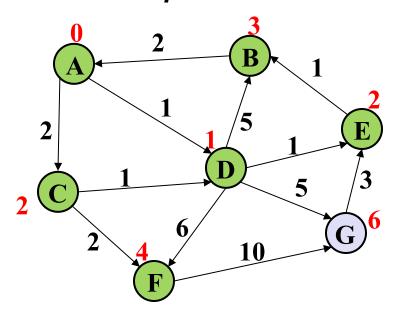
vertex	known?	cost	path
Α	Y	0	
В		≤ 3	Е
С	Y	2	Α
D	Y	1	Α
Е	Y	2	D
F		≤ 4	С
G		≤ 6	D



Order Added to Known Set:

A, D, C, E, B

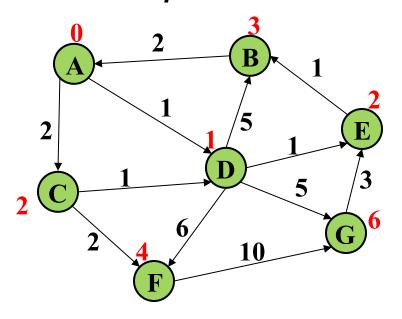
vertex	known?	cost	path
Α	Y	0	
В	Y	3	Е
С	Y	2	Α
D	Y	1	Α
Е	Y	2	D
F		≤ 4	С
G		≤ 6	D



Order Added to Known Set:

A, D, C, E, B, F

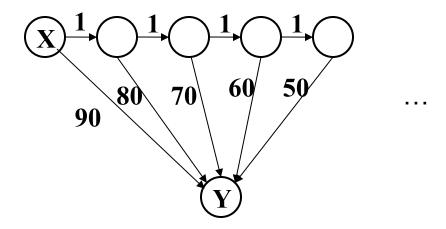
vertex	known?	cost	path
Α	Υ	0	
В	Y	3	Е
С	Y	2	Α
D	Y	1	Α
Е	Y	2	D
F	Y	4	С
G		≤ 6	D



Order Added to Known Set:

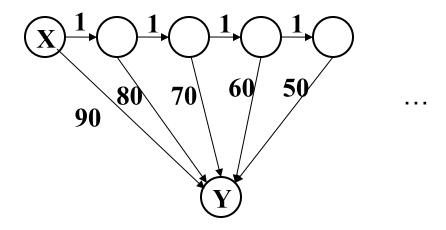
A, D, C, E, B, F, G

vertex	known?	cost	path
Α	Y	0	
В	Y	3	Е
С	Y	2	Α
D	Y	1	Α
Е	Y	2	D
F	Y	4	С
G	Y	6	D



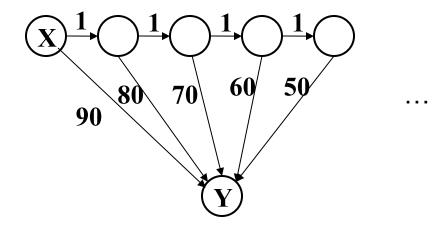
How will the best-cost-so-far for Y proceed?

Is this expensive?



How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive?



How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive? No, each edge is processed only once

A Greedy Algorithm

- Dijkstra's algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- An example of a greedy algorithm:
 - At each step, always does what seems best at that step
 - A locally optimal step, not necessarily globally optimal
 - Once a vertex is known, it is not revisited
 - Turns out to be globally optimal

Where are We?

- Had a problem: Compute shortest paths in a weighted graph with no negative weights
- Learned an algorithm: Dijkstra's algorithm
- What should we do after learning an algorithm?
 - Prove it is correct
 - Not obvious!
 - We will sketch the key ideas
 - Analyze its efficiency
 - Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

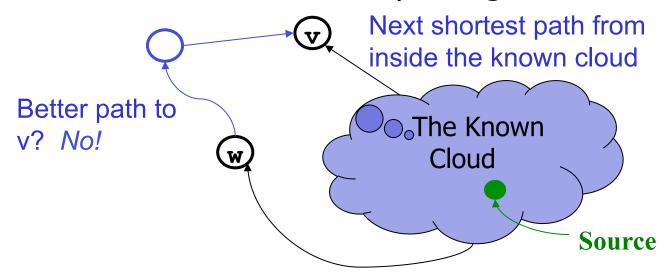
All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Correctness: The Cloud (Rough Sketch)



Suppose **v** is the next node to be marked known ("added to the cloud")

- The best-known path to v must have only nodes "in the cloud"
 - Else we would have picked a node closer to the cloud than v
- Suppose the actual shortest path to v is different
 - It won't use only cloud nodes, or we would know about it
 - So it must use non-cloud nodes. Let w be the first non-cloud node on this path. The part of the path up to w is already known and must be shorter than the best-known path to v. So v would not have been picked. Contradiction.

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
         a.cost = b.cost + weight((b,a))
         a.path = b
```

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
         a.cost = b.cost + weight((b,a))
         a.path = b
```

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
         a.cost = b.cost + weight((b,a))
         a.path = b
```

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
         a.cost = b.cost + weight((b,a))
         a.path = b
```

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
         a.cost = b.cost + weight((b,a))
         a.path = b
```

Improving asymptotic running time

- So far: $O(|V|^2)$
- We had a similar "problem" with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
- Solution?

Improving (?) asymptotic running time

- So far: $O(|V|^2)$
- We had a similar "problem" with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
- Solution?
 - A priority queue holding all unknown nodes, sorted by cost
 - But must support decreaseKey operation
 - Must maintain a reference from each node to its current position in the priority queue
 - Conceptually simple, but can be a pain to code up

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
 build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
        decreaseKey(a, "new cost - old cost"
        a.path = b
```

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
 build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
        decreaseKey(a, "new cost - old cost"
        a.path = b
```

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
 build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
        decreaseKey(a, "new cost - old cost"
        a.path = b
```

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
                                                 O(|E|log|V|)
        decreaseKey(a, "new cost - old cost"
        a.path = b
```

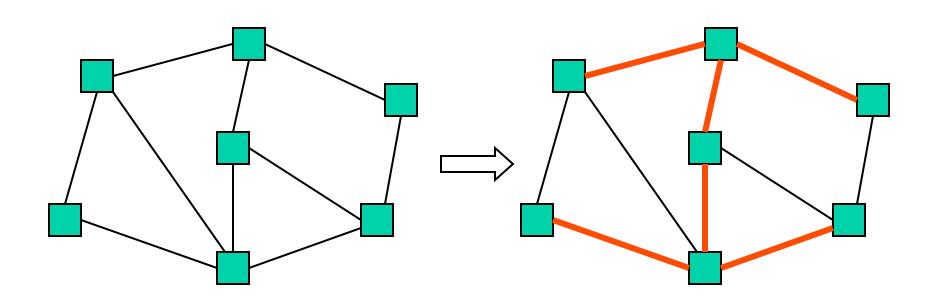
```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  build-heap with all nodes
  while(heap is not empty) {
                                                  O(|V|log|V|)
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
                                                  O(|E|log|V|)
        decreaseKey(a, "new cost - old cost"
         a.path = b
                                           O(|V|\log|V|+|E|\log|V|)
```

Dense vs. sparse again

- First approach: O(|V|²)
- Second approach: O(|V|log|V|+|E|log|V|)
- So which is better?
 - Sparse: $O(|V|\log|V|+|E|\log|V|)$ (if |E| > |V|, then $O(|E|\log|V|)$)
 - Dense: $O(|V|^2)$
- But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for "normal graphs", we might call decreaseKey rarely (or not percolate far), making |E|log|V| more like |E|

Spanning Trees

- A simple problem: Given a connected undirected graph G=(V,E), find a minimal subset of edges such that G is still connected
 - A graph G2=(V,E2) such that G2 is connected and removing any edge from E2 makes G2 disconnected



Observations

- 1. Any solution to this problem is a tree
 - Recall a tree does not need a root; just means acyclic
 - For any cycle, could remove an edge and still be connected
- 2. Solution not unique unless original graph was already a tree
- 3. Problem ill-defined if original graph not connected
 - So |E| ≥ |V|-1
- 4. A tree with |V| nodes has |V|-1 edges
 - So every solution to the spanning tree problem has |V|-1 edges

Motivation

A spanning tree connects all the nodes with as few edges as possible

- Example: A "phone tree" so everybody gets the message and no unnecessary calls get made
 - Bad example since would prefer a balanced tree

In most compelling uses, we have a *weighted* undirected graph and we want a tree of least total cost

- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem

Will do that next, after intuition from the simpler case

Two Approaches

Different algorithmic approaches to the spanning-tree problem:

- Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree
- 2. Iterate through edges; add to output any edge that does not create a cycle