CSE373: Data Structures & Algorithms
Lecture 15: Topological Sort / Graph Traversals

Aaron Bauer
Winter 2014
Topological Sort

Problem: Given a DAG $G = (V, E)$, output all vertices in an order such that no vertex appears before another vertex that has an edge to it.

Example input:

One example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415
Questions and comments

- Why do we perform topological sorts only on DAGs?
 - Because a cycle means there is no correct answer

- Is there always a unique answer?
 - No, there can be 1 or more answers; depends on the graph
 - Graph with 5 topological orders:

- Do some DAGs have exactly 1 answer?
 - Yes, including all lists

- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Uses

- Figuring out how to graduate
- Computing an order in which to recompute cells in a spreadsheet
- Determining an order to compile files using a Makefile
- In general, taking a dependency graph and finding an order of execution
- ...

Winter 2014

CSE373: Data Structures & Algorithms
A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree
 - Think "write in a field in the vertex"
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex v with labeled with in-degree of 0
 b) Output v and conceptually remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that (v,u) in E),
 decrement the in-degree of u
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?

In-degree: 0 0 2 1 1 1 1 1 1 1 3

Output:
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x
In-degree: 0 0 2 1 1 1 1 1 1 3 1

Output: 126
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?: x x

In-degree: 0 0 2 1 1 1 1 1 1 3

Output: 126
 142
Example

Output:

126
142
143

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?: x x x

In-degree: 0 0 2 1 1 1 1 1 1 1 3

Winter 2014 CSE373: Data Structures & Algorithms 9
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?: x x x x

In-degree: 0 0 2 1 1 1 1 1 1 1 3

Output: 126 142 143 374
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 0 2 0

Output:
126
142
143
374
373

Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 0 0 2 0

Output: 126 142 143 374 373 410 413 415 417 XYZ
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 0 2
 0 1

Output: 126 142 143 374 373 417 410
Example

Output:

126
142
143
374
373
410
413
415
417
XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0 0 0 0 0 0 1
 0 0 0 0 0 0 0

Winter 2014 CSE373: Data Structures & Algorithms
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0 0 1 0
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3

Output:
126
142
143
374
373
410
413
415
XYZ
415
Notice

• Needed a vertex with in-degree 0 to start
 – Will always have at least 1 because no cycles

• Ties among vertices with in-degrees of 0 can be broken arbitrarily
 – Can be more than one correct answer, by definition, depending on the graph
Running time?

```java
labelEachVertexWithItsInDegree();
for (ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
    w.indegree--;
}
```
Running time?

```java
labelEachVertexWithItsInDegree();
for (ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```

- What is the worst-case running time?
 - Initialization $O(|V|+|E|)$ (assuming adjacency list)
 - Sum of all find-new-vertex $O(|V|^2)$ (because each $O(|V|)$)
 - Sum of all decrements $O(|E|)$ (assuming adjacency list)
 - So total is $O(|V|^2)$ – not good for a sparse graph!
Doing better

The trick is to avoid searching for a zero-degree node every time!

– Keep the “pending” zero-degree nodes in a list, stack, queue, bag, table, or something
– Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) $v = \text{dequeue}()$
 b) Output v and remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), decrement the in-degree of u, if new degree is 0, enqueue it
Running time?

```java
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if(w.indegree==0)
            enqueue(v);
    }
}
```
Running time?

```java
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if(w.indegree==0)
            enqueue(v);
    }
}
```

• What is the worst-case running time?
 – Initialization: $O(|V|+|E|)$ (assuming adjacency list)
 – Sum of all enqueues and dequeues: $O(|V|)$
 – Sum of all decrements: $O(|E|)$ (assuming adjacency list)
 – So total is $O(|E| + |V|)$ – much better for sparse graph!
Graph Traversals

Next problem: For an arbitrary graph and a starting node \(v \), find all nodes \textit{reachable} from \(v \) (i.e., there exists a path from \(v \))

- Possibly “do something” for each node
- Examples: print to output, set a field, etc.

- Subsumed problem: Is an undirected graph connected?
- Related but different problem: Is a directed graph strongly connected?
 - Need cycles back to starting node

Basic idea:

- Keep following nodes
- But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once
Abstract Idea

```
traverseGraph(Node start) {
    Set pending = emptySet()
    pending.add(start)
    mark start as visited
    while (pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next
            if (u is not marked) {
                mark u
                pending.add(u)
            }
    }
}
```
Running Time and Options

• Assuming **add** and **remove** are $O(1)$, entire traversal is $O(|E|)$
 – Use an adjacency list representation

• The order we traverse depends entirely on **add** and **remove**
 – Popular choice: a stack “depth-first graph search” “DFS”
 – Popular choice: a queue “breadth-first graph search” “BFS”

• DFS and BFS are “big ideas” in computer science
 – Depth: recursively explore one part before going back to the other parts not yet explored
 – Breadth: explore areas closer to the start node first
Example: trees

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
DFS(Node start) {
  mark and process start
  for each node u adjacent to start
    if u is not marked
      DFS(u)
}
```

- A, B, D, E, C, F, G, H
- Exactly what we called a “pre-order traversal” for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once
Example: trees

- A tree is a graph and DFS and BFS are particularly easy to “see”

```plaintext
DFS2(Node start) {
    initialize stack s to hold start
    mark start as visited
    while(s is not empty) {
        next = s.pop() // and “process”
        for each node u adjacent to next
            if(u is not marked)
                mark u and push onto s
    }
}
```

- A, C, F, H, G, B, E, D
- A different but perfectly fine traversal
Example: trees

- A tree is a graph and DFS and BFS are particularly easy to “see”

```java
BFS(Node start) {
    initialize queue q to hold start
    mark start as visited
    while(q is not empty) {
        next = q.dequeue() // and “process”
        for each node u adjacent to next
            if(u is not marked)
                mark u and enqueue onto q
    }
}
```

- A, B, C, D, E, F, G, H
- A “level-order” traversal
Comparison

• Breadth-first always finds shortest paths, i.e., “optimal solutions”
 – Better for “what is the shortest path from \(x \) to \(y \)”

• But depth-first can use less space in finding a path
 – If *longest path* in the graph is \(p \) and highest out-degree is \(d \)
 then DFS stack never has more than \(d \times p \) elements
 – But a queue for BFS may hold \(O(|V|) \) nodes

• A third approach:
 – *Iterative deepening (IDFS):*
 • Try DFS but disallow recursion more than \(K \) levels deep
 • If that fails, increment \(K \) and start the entire search over
 – Like BFS, finds shortest paths. Like DFS, less space.
Saving the Path

• Our graph traversals can answer the reachability question:
 – “Is there a path from node x to node y?”

• But what if we want to actually output the path?
 – Like getting driving directions rather than just knowing it’s possible to get there!

• How to do it:
 – Instead of just “marking” a node, store the previous node along the path (when processing \(u \) causes us to add \(v \) to the search, set \(v.path \) field to be \(u \))
 – When you reach the goal, follow \(path \) fields back to where you started (and then reverse the answer)
 – If just wanted path length, could put the integer distance at each node instead
Example using BFS

What is a path from Seattle to Tyler
- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique
Single source shortest paths

- Done: BFS to find the minimum path length from v to u in $O(|E|+|V|)$

- Actually, can find the minimum path length from v to every node
 - Still $O(|E|+|V|)$
 - No faster way for a “distinguished” destination in the worst-case

- Now: Weighted graphs

 Given a weighted graph and node v,
 find the minimum-cost path from v to every node

- As before, asymptotically no harder than for one destination
- Unlike before, BFS will not work
Applications

• Driving directions
• Cheap flight itineraries
• Network routing
• Critical paths in project management
Not as easy

Why BFS won’t work: Shortest path may not have the fewest edges
- Annoying when this happens with costs of flights

We will assume there are no negative weights
- *Problem* is *ill-defined* if there are negative-cost *cycles*
- *Today’s algorithm* is *wrong* if *edges* can be negative
 - There are other, slower (but not terrible) algorithms
Dijkstra

- Algorithm named after its inventor Edsger Dijkstra (1930-2002)
 - Truly one of the “founders” of computer science; this is just one of his many contributions
 - Many people have a favorite Dijkstra story, even if they never met him
 - My favorite quotation: “computer science is no more about computers than astronomy is about telescopes”
Dijkstra’s algorithm

- The idea: reminiscent of BFS, but adapted to handle weights
 - Grow the set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a “best distance so far”
 - A priority queue will turn out to be useful for efficiency

- An example of a greedy algorithm
 - A series of steps
 - At each one the locally optimal choice is made