CSE332: Data Structures & Algorithms

Lecture 14: Introduction to Graphs

Aaron Bauer
Winter 2014
Announcements

• Reminder: HW4 partner selection due on Wednesday
• Extra office hours Tuesday, 4:30-5:30 in Bagley 154
• TA session Thursday, 4:30-5:30 in Bagley 154
 – Union-find and homework 4
Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept

- A graph is a pair
 \[G = (V, E) \]
 - A set of vertices, also known as nodes
 \[V = \{v_1, v_2, \ldots, v_n\} \]
 - A set of edges
 \[E = \{e_1, e_2, \ldots, e_m\} \]
 - Each edge \(e_i \) is a pair of vertices
 \((v_j, v_k) \)
 - An edge “connects” the vertices

- Graphs can be directed or undirected

\[V = \{Han, Leia, Luke\} \]
\[E = \{(Luke, Leia), (Han, Leia), (Leia, Han)\} \]
Undirected Graphs

• In undirected graphs, edges have no specific direction
 – Edges are always “two-way”

• Thus, \((u, v) \in E\) implies \((v, u) \in E\)
 – Only one of these edges needs to be in the set
 – The other is implicit, so normalize how you check for it

• Degree of a vertex: number of edges containing that vertex
 – Put another way: the number of adjacent vertices
Directed Graphs

- In directed graphs (sometimes called digraphs), edges have a direction.

 \[(u, v) \in E \text{ does not imply } (v, u) \in E.\]

 - Let \((u, v) \in E\) mean \(u \rightarrow v\)
 - Call \(u\) the source and \(v\) the destination

- In-degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination

- Out-degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source
Self-Edges, Connectedness

• A self-edge a.k.a. a loop is an edge of the form \((u, u)\)
 - Depending on the use/algorithm, a graph may have:
 • No self edges
 • Some self edges
 • All self edges (often therefore implicit, but we will be explicit)

• A node can have a degree / in-degree / out-degree of zero

• A graph does not have to be connected
 - Even if every node has non-zero degree
More notation

For a graph $G = (V, E)$

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?

$V = \{A, B, C, D\}$
$E = \{(C, B), (A, B), (B, A), (C, D)\}$
More notation

For a graph $G = (V, E)$

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum? 0
 - Maximum for undirected?
 - Maximum for directed?

$V = \{A, B, C, D\}$
$E = \{(C, B), (A, B), (B, A), (C, D)\}$
More notation

For a graph $G = (V, E)$

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum? 0
 - Maximum for undirected? $|V| |V+1| / 2 \in O(|V|^2)$
 - Maximum for directed?
More notation

For a graph $G = (V,E)$

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum? 0
 - Maximum for undirected? $|V| |V+1|/2 \in O(|V|^2)$
 - Maximum for directed? $|V|^2 \in O(|V|^2)$
 (assuming self-edges allowed, else subtract $|V|$)
More notation

For a graph $G = (V,E)$:

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum? 0
 - Maximum for undirected? $|V| |V+1|/2 \in O(|V|^2)$
 - Maximum for directed? $|V|^2 \in O(|V|^2)$
 (assuming self-edges allowed, else subtract $|V|$)

- If $(u,v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v,u) \in E$
Examples again

Which would use directed edges? Which would have self-edges?
Which would be connected? Which could have 0-degree nodes?

1. Web pages with links
2. Facebook friends
3. “Input data” for the Kevin Bacon game
4. Methods in a program that call each other
5. Road maps (e.g., Google maps)
6. Airline routes
7. Family trees
8. Course pre-requisites
Weighted Graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples use ints)
 - *Orthogonal* to whether graph is directed
 - Some graphs allow *negative weights*; many do not

```
Clinton ——— 20 ——— Mukilteo

Kingston ——— 30 ——— Edmonds

Bainbridge ——— 35 ——— Seattle

Bremerton
```
Examples

What, if anything, might weights represent for each of these? Do negative weights make sense?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
Paths and Cycles

- A **path** is a list of vertices \([v_0, v_1, \ldots, v_n]\) such that \((v_i, v_{i+1}) \in E\) for all \(0 \leq i < n\). Say “a path from \(v_0\) to \(v_n\)”

- A **cycle** is a path that begins and ends at the same node \((v_0 = v_n)\)

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]
Path Length and Cost

• Path length: Number of edges in a path
• Path cost: Sum of weights of edges in a path

Example where
P = [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

length(P) = 5
cost(P) = 11.5
Simple Paths and Cycles

- A simple path repeats no vertices, except the first might be the last
 - [Seattle, Salt Lake City, San Francisco, Dallas]
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

- Recall, a cycle is a path that ends where it begins
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 - [Seattle, Salt Lake City, Seattle, Dallas, Seattle]

- A simple cycle is a cycle and a simple path
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D?

Does the graph contain any cycles?
Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D? No

Does the graph contain any cycles?
Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D? No

Does the graph contain any cycles? No
Undirected-Graph Connectivity

• An undirected graph is connected if for all pairs of vertices u, v, there exists a path from u to v.

Connected graph

Disconnected graph

• An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices u, v, there exists an edge from u to v.

plus self edges
Directed-Graph Connectivity

- A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.

- A directed graph is **weakly connected** if there is a path from every vertex to every other vertex *ignoring direction of edges*.

- A **complete** a.k.a. **fully connected** directed graph has an edge from every vertex to every other vertex *plus self edges*.
Examples

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?

• Web pages with links
• Facebook friends
• “Input data” for the Kevin Bacon game
• Methods in a program that call each other
• Road maps (e.g., Google maps)
• Airline routes
• Family trees
• Course pre-requisites
• …
Trees as Graphs

When talking about graphs, we say a tree is a graph that is:
 – Undirected
 – Acyclic
 – Connected

So all trees are graphs, but not all graphs are trees

How does this relate to the trees we know and love?...

Example:
Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children

- Given a tree, picking a root gives a unique rooted tree
 - The tree is just drawn differently and with undirected edges
Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children

- Given a tree, picking a root gives a unique rooted tree
 - The tree is just drawn differently and with undirected edges
Directed Acyclic Graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree

- Every DAG is a directed graph
- But not every directed graph is a DAG
Examples

Which of our directed-graph examples do you expect to be a DAG?

• Web pages with links
• “Input data” for the Kevin Bacon game
• Methods in a program that call each other
• Airline routes
• Family trees
• Course pre-requisites
Density / Sparsity

- Recall: In an undirected graph, $0 \leq |E| < |V|^2$
- Recall: In a directed graph: $0 \leq |E| \leq |V|^2$
- So for any graph, $O(|E|+|V|^2)$ is $O(|V|^2)$
- Another fact: If an undirected graph is connected, then $|V|-1 \leq |E|$
- Because $|E|$ is often much smaller than its maximum size, we do not always approximate $|E|$ as $O(|V|^2)$
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., $|E|$ is $\Theta(|V|^2)$ we say the graph is dense
 - More sloppily, dense means “lots of edges”
 - If $|E|$ is $O(|V|)$ we say the graph is sparse
 - More sloppily, sparse means “most possible edges missing”
What is the Data Structure?

- So graphs are really useful for lots of data and questions
 - For example, “what’s the lowest-cost path from x to y”

- But we need a data structure that represents graphs

- The “best one” can depend on:
 - Properties of the graph (e.g., dense versus sparse)
 - The common queries (e.g., “is \((u, v)\) an edge?” versus “what are the neighbors of node \(u\)?”)

- So we’ll discuss the two standard graph representations
 - Adjacency Matrix and Adjacency List
 - Different trade-offs, particularly time versus space
Adjacency Matrix

- Assign each node a number from 0 to $|V| - 1$
- A $|V| \times |V|$ matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then $M[u][v]$ being true means there is an edge from u to v

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & F & T & F & F \\
1 & T & F & F & F \\
2 & F & T & F & T \\
3 & F & F & F & F \\
\end{array}
\]
Adjacency Matrix Properties

• Running time to:
 – Get a vertex’s out-edges:
 – Get a vertex’s in-edges:
 – Decide if some edge exists:
 – Insert an edge:
 – Delete an edge:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

• Space requirements:

• Best for sparse or dense graphs?
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:

- Space requirements:

- Best for sparse or dense graphs?
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:

- Space requirements:

- Best for sparse or dense graphs?
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge:
 - Delete an edge:

- Space requirements:

- Best for sparse or dense graphs?
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge:

- Space requirements:

- Best for sparse or dense graphs?
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- Space requirements:

- Best for sparse or dense graphs?
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- Space requirements:
 - $|V|^2$ bits

- Best for sparse or dense graphs?
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- Space requirements:
 - $|V|^2$ bits

- Best for sparse or dense graphs?
 - Best for dense graphs
Adjacency Matrix Properties

• How will the adjacency matrix vary for an undirected graph?

• How can we adapt the representation for weighted graphs?

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & F & T & F & F \\
1 & T & F & F & F \\
2 & F & T & F & T \\
3 & F & F & F & F \\
\end{array}
\]
Adjacency Matrix Properties

• How will the adjacency matrix vary for an undirected graph?
 – Undirected will be symmetric around the diagonal

• How can we adapt the representation for weighted graphs?
Adjacency Matrix Properties

• How will the adjacency matrix vary for an undirected graph?
 – Undirected will be symmetric around the diagonal

• How can we adapt the representation for weighted graphs?
 – Instead of a Boolean, store a number in each cell
 – Need some value to represent ‘not an edge’
 • In some situations, 0 or -1 works

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & F & T & F & F \\
1 & T & F & F & F \\
2 & F & T & F & T \\
3 & F & F & F & F \\
\end{array}
\]
Adjacency List

- Assign each node a number from 0 to $|V| - 1$
- An array of length $|V|$ in which each entry stores a list of all adjacent vertices (e.g., linked list)
Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges:
 - Get all of a vertex’s in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:

- Space requirements:

- Best for dense or sparse graphs?
Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges: $O(d)$ where d is out-degree of vertex
 - Get all of a vertex’s in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:

- Space requirements:

- Best for dense or sparse graphs?
Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges: $O(d)$ where d is out-degree of vertex
 - Get all of a vertex’s in-edges: $O(|E|)$ (but could keep a second adjacency list for this!)
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:

- Space requirements:

- Best for dense or sparse graphs?
Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges: \(O(d) \) where \(d \) is out-degree of vertex
 - Get all of a vertex’s in-edges: \(O(|E|) \) (but could keep a second adjacency list for this!)
 - Decide if some edge exists: \(O(d) \) where \(d \) is out-degree of source
 - Insert an edge:
 - Delete an edge:

- Space requirements:

- Best for dense or sparse graphs?
Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges: \(O(d) \) where \(d \) is out-degree of vertex
 - Get all of a vertex’s in-edges: \(O(|E|) \) (but could keep a second adjacency list for this!)
 - Decide if some edge exists: \(O(d) \) where \(d \) is out-degree of source
 - Insert an edge: \(O(1) \) (unless you need to check if it’s there)
 - Delete an edge:

- Space requirements:

- Best for dense or sparse graphs?
Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges: $O(d)$ where d is out-degree of vertex
 - Get all of a vertex’s in-edges: $O(|E|)$ (but could keep a second adjacency list for this!)
 - Decide if some edge exists: $O(d)$ where d is out-degree of source
 - Insert an edge: $O(1)$ (unless you need to check if it’s there)
 - Delete an edge: $O(d)$ where d is out-degree of source

- Space requirements:

- Best for dense or sparse graphs?
Adjacency List Properties

• Running time to:
 – Get all of a vertex’s out-edges: $O(d)$ where d is out-degree of vertex
 – Get all of a vertex’s in-edges: $O(|E|)$ (but could keep a second adjacency list for this!)
 – Decide if some edge exists: $O(d)$ where d is out-degree of source
 – Insert an edge: $O(1)$ (unless you need to check if it’s there)
 – Delete an edge: $O(d)$ where d is out-degree of source

• Space requirements:
 – $O(|V|+|E|)$

• Best for dense or sparse graphs?
Adjacency List Properties

• Running time to:
 – Get all of a vertex’s out-edges:
 \(O(d) \) where \(d \) is out-degree of vertex
 – Get all of a vertex’s in-edges:
 \(O(|E|) \) (but could keep a second adjacency list for this!)
 – Decide if some edge exists:
 \(O(d) \) where \(d \) is out-degree of source
 – Insert an edge: \(O(1) \) (unless you need to check if it’s there)
 – Delete an edge: \(O(d) \) where \(d \) is out-degree of source

• Space requirements:
 – \(O(|V|+|E|) \)

• Best for dense or sparse graphs?
 – Best for sparse graphs, so usually just stick with linked lists
Undirected Graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs

- Matrix: Can save roughly 2x space
 - But may slow down operations in languages with “proper” 2D arrays (not Java, which has only arrays of arrays)
 - How would you “get all neighbors”?
- Lists: Each edge in two lists to support efficient “get all neighbors”

Example:
Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms

• **Topological sort:** Given a DAG, order all the vertices so that every vertex comes before all of its neighbors

• **Shortest paths:** Find the shortest or lowest-cost path from x to y
 – Related: Determine if there even is such a path
Topological Sort

Problem: Given a DAG $G = (V, E)$, output all vertices in an order such that no vertex appears before another vertex that has an edge to it.

Example input:

One example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415
Questions and comments

- Why do we perform topological sorts only on DAGs?
 - Because a cycle means there is no correct answer

- Is there always a unique answer?
 - No, there can be 1 or more answers; depends on the graph
 - Graph with 5 topological orders:

- Do some DAGs have exactly 1 answer?
 - Yes, including all lists

- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Uses

• Figuring out how to graduate

• Computing an order in which to recompute cells in a spreadsheet

• Determining an order to compile files using a Makefile

• In general, taking a dependency graph and finding an order of execution

• …
A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree
 - Think "write in a field in the vertex"
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and conceptually remove it from the graph
 c) For each vertex \(u \) adjacent to \(v \) (i.e. \(u \) such that \((v, u) \) in \(E \)), decrement the in-degree of \(u \)