CSE373: Data Structures & Algorithms
Lecture 13: Hash Collisions

Aaron Bauer
Winter 2014
Announcements

• Homework 3 due at 11 p.m. (or later with late days)
• Homework 4 has been posted (due Feb. 20)
 – Can be done with a partner
 – Partner selection due Feb. 12
 – Partner form linked from homework
Hash Tables: Review

- Aim for constant-time (i.e., $O(1)$) find, insert, and delete
 - “On average” under some reasonable assumptions

- A hash table is an array of some fixed size
 - But growable as we’ll see

Hash table library

client

E int table-index collision? collision resolution

<table>
<thead>
<tr>
<th>TableSize - 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
One expert suggestion

- int result = 17;
- foreach field f
 - int fieldHashCode =
 - boolean: (f ? 1: 0)
 - byte, char, short, int: (int) f
 - long: (int) (f ^ (f >>> 32))
 - float: Float.floatToIntBits(f)
 - double: Double.doubleToLongBits(f), then above
 - Object: object.hashCode()
 - result = 31 * result + fieldHashCode
Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
 – Ideas?
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10
Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42
with mod hashing
and $\text{TableSize} = 10$
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing
and TableSize = 10
Separate Chaining

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42 with mod hashing

and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10
Thoughts on chaining

• Worst-case time for \texttt{find}?
 – Linear
 – But only with really bad luck or bad hash function
 – So not worth avoiding (e.g., with balanced trees at each bucket)

• Beyond asymptotic complexity, some “data-structure engineering” may be warranted
 – Linked list vs. array vs. chunked list (lists should be short!)
 – Move-to-front
 – Maybe leave room for 1 element (or 2?) in the table itself, to optimize constant factors for the common case
 • A time-space trade-off…
Time vs. space (constant factors only here)

```
0 / 10 / 10
1 / 42 12 22 /
2 / 42
3 / X
4 / X
5 / X
6 / X
7 / 107 /
8 / X
9 / X
```

```
0 10 /
1 / X
2 42
3 / X
4 / X
5 / X
6 / X
7 107 /
8 / X
9 / X
```

More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \quad \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is ___
More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:

- Each unsuccessful `find` compares against ____ items
More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \quad \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:

- Each unsuccessful \texttt{find} compares against λ items
- Each successful \texttt{find} compares against ____ items
More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \quad \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:
- Each unsuccessful find compares against λ items
- Each successful find compares against $\lambda / 2$ items

So we like to keep λ fairly low (e.g., 1 or 1.5 or 2) for chaining
Alternative: Use empty space in the table

- Another simple idea: If $h(\text{key})$ is already full,
 - try $(h(\text{key}) + 1) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 2) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 3) \mod \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10
Alternative: Use empty space in the table

- Another simple idea: If $h(\text{key})$ is already full,
 - try $(h(\text{key}) + 1) \% \text{TableSize}$. If full,
 - try $(h(\text{key}) + 2) \% \text{TableSize}$. If full,
 - try $(h(\text{key}) + 3) \% \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10

```
0 / 
1 / 
2 / 
3 / 
4 / 
5 / 
6 / 
7 / 
8 38
9 19
```
Alternative: Use empty space in the table

- Another simple idea: If \(h(key) \) is already full,
 - try \((h(key) + 1) \mod TableSize \). If full,
 - try \((h(key) + 2) \mod TableSize \). If full,
 - try \((h(key) + 3) \mod TableSize \). If full...

- Example: insert 38, 19, 8, 109, 10
Alternative: Use empty space in the table

• Another simple idea: If \(h(\text{key}) \) is already full, try \((h(\text{key}) + 1) \mod \text{TableSize}\). If full, try \((h(\text{key}) + 2) \mod \text{TableSize}\). If full, try \((h(\text{key}) + 3) \mod \text{TableSize}\). If full...

• Example: insert 38, 19, 8, 109, 10
Alternative: Use empty space in the table

• Another simple idea: If $h(\text{key})$ is already full,
 – try $(h(\text{key}) + 1) \% \text{TableSize}$. If full,
 – try $(h(\text{key}) + 2) \% \text{TableSize}$. If full,
 – try $(h(\text{key}) + 3) \% \text{TableSize}$. If full...

• Example: insert 38, 19, 8, 109, 10

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
| 8 | 109 | 10 | / | / | / | /
| 7 | 8 | 9 |
| 38 | 19 |
Probing hash tables

Trying the next spot is called probing (also called open addressing)
 – We just did linear probing
 • i^{th} probe was $(h(key) + i) \mod \text{TableSize}$
 – In general have some probe function f and use
 $h(key) + f(i) \mod \text{TableSize}$

Open addressing does poorly with high load factor λ
 – So want larger tables
 – Too many probes means no more $O(1)$
Other operations

insert finds an open table position using a probe function.

What about **find**?
- Must use same probe function to “retrace the trail” for the data
- Unsuccessful search when reach empty position

What about **delete**?
- **Must** use “lazy” deletion. Why?
 - Marker indicates “no data here, but don’t stop probing”
- Note: **delete** with chaining is plain-old list-remove
(Primary) Clustering

It turns out linear probing is a *bad idea*, even though the probe function is quick to compute (which is a good thing)

Tends to produce *clusters*, which lead to long probing sequences

- Called primary clustering
- Saw this starting in our example
Analysis of Linear Probing

• Trivial fact: For any $\lambda < 1$, linear probing will find an empty slot
 – It is “safe” in this sense: no infinite loop unless table is full

• Non-trivial facts we won’t prove:
 Average # of probes given λ (in the limit as $\text{TableSize} \to \infty$)
 – Unsuccessful search:
 $$\frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)^2} \right)$$
 – Successful search:
 $$\frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right)$$

• This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)
In a chart

- Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes “large table” but point remains)

- By comparison, chaining performance is linear in λ and has no trouble with $\lambda > 1$
Quadratic probing

- We can avoid primary clustering by changing the probe function
 \[(h(key) + f(i)) \mod \text{TableSize}\]

- A common technique is quadratic probing:
 \[f(i) = i^2\]
 - So probe sequence is:
 - 0\(^{th}\) probe: \(h(key) \mod \text{TableSize}\)
 - 1\(^{st}\) probe: \((h(key) + 1) \mod \text{TableSize}\)
 - 2\(^{nd}\) probe: \((h(key) + 4) \mod \text{TableSize}\)
 - 3\(^{rd}\) probe: \((h(key) + 9) \mod \text{TableSize}\)
 - ...
 - \(i^{th}\) probe: \((h(key) + i^2) \mod \text{TableSize}\)

- Intuition: Probes quickly “leave the neighborhood”
Quadratic Probing Example

Table Size = 10

Insert:
89
18
49
58
79
Quadratic Probing Example

TableSize = 10
Insert:
89
18
49
58
79
Quadratic Probing Example

Table Size = 10

Insert:
- 89
- 18
- 49
- 58
- 79

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quadratic Probing Example

Table Size = 10
Insert:
89
18
49
58
79
Quadratic Probing Example

TableSize=10
Insert:
89
18
49
58
79
Quadratic Probing Example

Table Size = 10

Insert:
- 89
- 18
- 49
- 58
- 79

<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
</tr>
</tbody>
</table>
Another Quadratic Probing Example

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)
Another Quadratic Probing Example

TableSize = 7

Insert:

<table>
<thead>
<tr>
<th>Value</th>
<th>Probed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>(76 % 7 = 6)</td>
</tr>
<tr>
<td>40</td>
<td>(40 % 7 = 5)</td>
</tr>
<tr>
<td>48</td>
<td>(48 % 7 = 6)</td>
</tr>
<tr>
<td>5</td>
<td>(5 % 7 = 5)</td>
</tr>
<tr>
<td>55</td>
<td>(55 % 7 = 6)</td>
</tr>
<tr>
<td>47</td>
<td>(47 % 7 = 5)</td>
</tr>
</tbody>
</table>
Another Quadratic Probing Example

TableSize = 7

Insert:
76
40
48
55
47

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(55 % 7 = 6)
(47 % 7 = 5)
Another Quadratic Probing Example

Table Size = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
 5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)
Another Quadratic Probing Example

Table Size = 7

Insert:
- 76 \ (76 \% \ 7 = 6)
- 40 \ (40 \% \ 7 = 5)
- 48 \ (48 \% \ 7 = 6)
- 5 \ (5 \% \ 7 = 5)
- 55 \ (55 \% \ 7 = 6)
- 47 \ (47 \% \ 7 = 5)
Another Quadratic Probing Example

Table Size $= 7$

<table>
<thead>
<tr>
<th>Insert</th>
<th>Key</th>
<th>Hash Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>76</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>55</td>
<td>55</td>
<td>6</td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>5</td>
</tr>
</tbody>
</table>

Table: [0:48, 1:, 2:5, 3:55, 4:, 5:40, 6:76]
Another Quadratic Probing Example

Table Size = 7

<table>
<thead>
<tr>
<th>Insert</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>(76 % 7 = 6)</td>
</tr>
<tr>
<td>40</td>
<td>(40 % 7 = 5)</td>
</tr>
<tr>
<td>48</td>
<td>(48 % 7 = 6)</td>
</tr>
<tr>
<td>5</td>
<td>(5 % 7 = 5)</td>
</tr>
<tr>
<td>55</td>
<td>(55 % 7 = 6)</td>
</tr>
<tr>
<td>47</td>
<td>(47 % 7 = 5)</td>
</tr>
</tbody>
</table>

Doh!: For all \(n\), \(((n*n) +5) \% 7\) is 0, 2, 5, or 6

- Excel shows “at least” 50 probes and a pattern
- Proof (like induction) using \((n^2+5) \% 7 = ((n-7)^2+5) \% 7\)
 - In fact, for all \(c\) and \(k\), \((n^2+c) \% k = ((n-k)^2+c) \% k\)
From Bad News to Good News

• Bad news:
 – Quadratic probing can cycle through the same full indices, never terminating despite table not being full

• Good news:
 – If \texttt{TableSize} is \textit{prime} and \(\lambda < \frac{1}{2} \), then quadratic probing will find an empty slot in at most \(\texttt{TableSize}/2 \) probes
 – So: If you keep \(\lambda < \frac{1}{2} \) and \texttt{TableSize} is \textit{prime}, no need to detect cycles

 – Optional: Proof is posted in \texttt{lecture13.txt}
 • Also, slightly less detailed proof in textbook
 • Key fact: For prime \(T \) and \(0 < i, j < T/2 \) where \(i \neq j \),
 \((k + i^2) \% T \neq (k + j^2) \% T \) (i.e., no index repeat)
Clustering reconsidered

• Quadratic probing does not suffer from primary clustering: no problem with keys initially hashing to the same neighborhood

• But it’s no help if keys initially hash to the same index
 – Called secondary clustering

• Can avoid secondary clustering with a probe function that depends on the key: double hashing…
Double hashing

Idea:
- Given two good hash functions h and g, it is very unlikely that for some key, $h(\text{key}) = g(\text{key})$
- So make the probe function $f(i) = i \times g(\text{key})$

Probe sequence:
- 0th probe: $h(\text{key}) \mod \text{TableSize}$
- 1st probe: $(h(\text{key}) + g(\text{key})) \mod \text{TableSize}$
- 2nd probe: $(h(\text{key}) + 2 \times g(\text{key})) \mod \text{TableSize}$
- 3rd probe: $(h(\text{key}) + 3 \times g(\text{key})) \mod \text{TableSize}$
- ...
- ith probe: $(h(\text{key}) + i \times g(\text{key})) \mod \text{TableSize}$

Detail: Make sure $g(\text{key})$ cannot be 0
Double-hashing analysis

• Intuition: Because each probe is “jumping” by \(g(\text{key}) \) each time, we “leave the neighborhood” and “go different places from other initial collisions”

• But we could still have a problem like in quadratic probing where we are not “safe” (infinite loop despite room in table)
 – It is known that this cannot happen in at least one case:
 • \(h(\text{key}) = \text{key} \mod p \)
 • \(g(\text{key}) = q - (\text{key} \mod q) \)
 • \(2 < q < p \)
 • \(p \) and \(q \) are prime
More double-hashing facts

- Assume “uniform hashing”
 - Means probability of \(g(key1) \mod p \equiv g(key2) \mod p \) is \(1/p \)

- Non-trivial facts we won’t prove:
 - Average # of probes given \(\lambda \) (in the limit as TableSize → ∞)
 - Unsuccessful search (intuitive):
 \[
 \frac{1}{1 - \lambda}
 \]
 - Successful search (less intuitive):
 \[
 \frac{1}{\lambda \log_e \left(\frac{1}{1 - \lambda} \right)}
 \]

- Bottom line: unsuccessful bad (but not as bad as linear probing), but successful is not nearly as bad
Charts

Uniform Hashing

Linear Probing

Average # of Probes

Load Factor

Average # of Probes

Load Factor

Uniform Hashing

Linear Probing

Average # of Probes

Load Factor

Average # of Probes

Load Factor
Rehashing

- As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything

- With chaining, we get to decide what “too full” means
 - Keep load factor reasonable (e.g., < 1)?
 - Consider average or max size of non-empty chains?

- For probing, half-full is a good rule of thumb

- New table size
 - Twice-as-big is a good idea, except that won’t be prime!
 - So go about twice-as-big
 - Can have a list of prime numbers in your code since you won’t grow more than 20-30 times
Graphs

• A graph is a formalism for representing relationships among items
 – Very general definition because very general concept

• A graph is a pair
 \[G = (V, E) \]
 – A set of vertices, also known as nodes
 \[V = \{v_1, v_2, \ldots, v_n\} \]
 – A set of edges
 \[E = \{e_1, e_2, \ldots, e_m\} \]
 • Each edge \(e_i \) is a pair of vertices
 \((v_j, v_k) \)
 • An edge “connects” the vertices

• Graphs can be directed or undirected
An ADT?

- Can think of graphs as an ADT with operations like $\text{isEdge}((v_j, v_k))$
- But it is unclear what the “standard operations” are
- Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms
- Many important problems can be solved by:
 1. Formulating them in terms of graphs
 2. Applying a standard graph algorithm
- To make the formulation easy and standard, we have a lot of standard terminology about graphs
Some Graphs

For each, what are the vertices and what are the edges?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...

Using the same algorithms for problems across so many domains sounds like “core computer science and engineering”
Undirected Graphs

• In undirected graphs, edges have no specific direction
 – Edges are always “two-way”

• Thus, $(u, v) \in E$ implies $(v, u) \in E$
 – Only one of these edges needs to be in the set
 – The other is implicit, so normalize how you check for it

• Degree of a vertex: number of edges containing that vertex
 – Put another way: the number of adjacent vertices
Directed Graphs

• In directed graphs (sometimes called digraphs), edges have a direction.

A B C D

• Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).
 • Let \((u, v) \in E\) mean \(u \rightarrow v\)
 • Call \(u\) the source and \(v\) the destination

• In-degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
• Out-degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source
Self-Edges, Connectedness

• A self-edge a.k.a. a loop is an edge of the form (u, u)
 – Depending on the use/algorithm, a graph may have:
 • No self edges
 • Some self edges
 • All self edges (often therefore implicit, but we will be explicit)

• A node can have a degree / in-degree / out-degree of zero

• A graph does not have to be connected
 – Even if every node has non-zero degree
More notation

For a graph $G = (V, E)$

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?

V = \{ A, B, C, D \}
E = \{(C, B), (A, B), (B, A), (C, D)\}
More notation

For a graph $G = (V, E)$

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?
More notation

For a graph $G = (V,E)$

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum? 0
 - Maximum for undirected? $\frac{|V|(|V|+1)}{2} \in O(|V|^2)$
 - Maximum for directed?
More notation

For a graph $G = (V,E)$

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum? 0
 - Maximum for undirected? $|V|(|V+1|)/2 \in O(|V|^2)$
 - Maximum for directed? $|V|^2 \in O(|V|^2)$
 (assuming self-edges allowed, else subtract $|V|$)
More notation

For a graph $G = (V, E)$:

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum? 0
 - Maximum for undirected? $|V| |V+1|/2 \in O(|V|^2)$
 - Maximum for directed? $|V|^2 \in O(|V|^2)$
 (assuming self-edges allowed, else subtract $|V|$)

- If $(u, v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v, u) \in E$