
CSE373: Data Structures & Algorithms

Lecture 10: Amortized Analysis
 and Disjoint Sets

Aaron Bauer
Winter 2014

Amortized

•  Recall our plain-old stack implemented as an array that doubles its
size if it runs out of room
–  How can we claim push is O(1) time if resizing is O(n) time?
–  We can’t, but we can claim it’s an O(1) amortized operation

•  What does amortized mean?
•  When are amortized bounds good enough?
•  How can we prove an amortized bound?

Will just do two simple examples
–  Text has more sophisticated examples and proof techniques
–  Idea of how amortized describes average cost is essential

Winter 2014 2 CSE373: Data Structures & Algorithms

Amortized Complexity

If a sequence of M operations takes O(M f(n)) time,
we say the amortized runtime is O(f(n))

Amortized bound: worst-case guarantee over sequences of operations
–  Example: If any n operations take O(n), then amortized O(1)
–  Example: If any n operations take O(n3), then amortized O(n2)

•  The worst case time per operation can be larger than f(n)

–  As long as the worst case is always “rare enough” in any
sequence of operations

Amortized guarantee ensures the average time per operation for any
sequence is O(f(n))

Winter 2014 3 CSE373: Data Structures & Algorithms

“Building Up Credit”

•  Can think of preceding “cheap” operations as building up “credit”
that can be used to “pay for” later “expensive” operations

•  Because any sequence of operations must be under the bound,
enough “cheap” operations must come first
–  Else a prefix of the sequence, which is also a sequence,

would violate the bound

Winter 2014 4 CSE373: Data Structures & Algorithms

Example #1: Resizing stack

A stack implemented with an array where we double the size of the
array if it becomes full

Claim: Any sequence of push/pop/isEmpty is amortized O(1)

Need to show any sequence of M operations takes time O(M)

–  Recall the non-resizing work is O(M) (i.e., M*O(1))
–  The resizing work is proportional to the total number of element

copies we do for the resizing
–  So it suffices to show that:

 After M operations, we have done < 2M total element copies
 (So average number of copies per operation is bounded by a

constant)

Winter 2014 5 CSE373: Data Structures & Algorithms

Amount of copying

After M operations, we have done < 2M total element copies

Let n be the size of the array after M operations
–  Then we have done a total of:

 n/2 + n/4 + n/8 + … INITIAL_SIZE < n
 element copies

–  Because we must have done at least enough push
operations to cause resizing up to size n:

 M ≥ n/2
–  So

2M ≥ n > number of element copies

Winter 2014 6 CSE373: Data Structures & Algorithms

Other approaches

•  If array grows by a constant amount (say 1000),
 operations are not amortized O(1)

–  After O(M) operations, you may have done Θ(M2) copies

•  If array shrinks when 1/2 empty,
 operations are not amortized O(1)

–  Terrible case: pop once and shrink, push once and grow, pop
once and shrink, …

•  If array shrinks when 3/4 empty,
 it is amortized O(1)

–  Proof is more complicated, but basic idea remains: by the time
an expensive operation occurs, many cheap ones occurred

Winter 2014 7 CSE373: Data Structures & Algorithms

Example #2: Queue with two stacks
A clever and simple queue implementation using only stacks

Winter 2014 8 CSE373: Data Structures & Algorithms

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

C
B
A

in out

enqueue: A, B, C

Example #2: Queue with two stacks
A clever and simple queue implementation using only stacks

Winter 2014 9 CSE373: Data Structures & Algorithms

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

in out

dequeue

B
C

A

Example #2: Queue with two stacks
A clever and simple queue implementation using only stacks

Winter 2014 10 CSE373: Data Structures & Algorithms

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

in out

enqueue D, E

B
C

A

E
D

Example #2: Queue with two stacks
A clever and simple queue implementation using only stacks

Winter 2014 11 CSE373: Data Structures & Algorithms

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

in out

dequeue twice

C B A

E
D

Example #2: Queue with two stacks
A clever and simple queue implementation using only stacks

Winter 2014 12 CSE373: Data Structures & Algorithms

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

in out

dequeue again

D C B A

E

Correctness and usefulness

•  If x is enqueued before y, then x will be popped from in later
than y and therefore popped from out sooner than y
–  So it is a queue

•  Example:
–  Wouldn’t it be nice to have a queue of t-shirts to wear

instead of a stack (like in your dresser)?
–  So have two stacks

•  in: stack of t-shirts go after you wash them
•  out: stack of t-shirts to wear
•  if out is empty, reverse in into out

Winter 2014 13 CSE373: Data Structures & Algorithms

Analysis

•  dequeue is not O(1) worst-case because out might be empty
and in may have lots of items

•  But if the stack operations are (amortized) O(1), then any
sequence of queue operations is amortized O(1)

–  The total amount of work done per element is 1 push onto
in, 1 pop off of in, 1 push onto out, 1 pop off of out

–  When you reverse n elements, there were n earlier O(1)
enqueue operations to average with

Winter 2014 14 CSE373: Data Structures & Algorithms

Amortized useful?

•  When the average per operation is all we care about (i.e., sum
over all operations), amortized is perfectly fine
–  This is the usual situation

•  If we need every operation to finish quickly (e.g., in a web
server), amortized bounds may be too weak

•  While amortized analysis is about averages, we are averaging
cost-per-operation on worst-case input
–  Contrast: Average-case analysis is about averages across

possible inputs. Example: if all initial permutations of an
array are equally likely, then quicksort is O(n log n) on
average even though on some inputs it is O(n2))

Winter 2014 15 CSE373: Data Structures & Algorithms

Not always so simple

•  Proofs for amortized bounds can be much more complicated

•  Example: Splay trees are dictionaries with amortized O(log n)
operations
–  No extra height field like AVL trees
–  See Chapter 4.5 if curious

•  For more complicated examples, the proofs need much more
sophisticated invariants and “potential functions” to describe
how earlier cheap operations build up “energy” or “money” to
“pay for” later expensive operations
–  See Chapter 11 if curious

•  But complicated proofs have nothing to do with the code!

Winter 2014 16 CSE373: Data Structures & Algorithms

The plan

•  What are disjoint sets
–  And how are they “the same thing” as equivalence relations

•  The union-find ADT for disjoint sets

•  Applications of union-find

Next lecture:

•  Basic implementation of the ADT with “up trees”

•  Optimizations that make the implementation much faster

Winter 2014 17 CSE373: Data Structures & Algorithms

Disjoint sets

•  A set is a collection of elements (no-repeats)

•  Two sets are disjoint if they have no elements in common
–  S1 ∩ S2 = ∅

•  Example: {a, e, c} and {d, b} are disjoint

•  Example: {x, y, z} and {t, u, x} are not disjoint

Winter 2014 18 CSE373: Data Structures & Algorithms

Partitions
A partition P of a set S is a set of sets {S1,S2,…,Sn} such that
every element of S is in exactly one Si

Put another way:
–  S1 ∪ S2 ∪ . . . ∪ Sk = S
–  i ≠ j implies Si ∩ Sj = ∅ (sets are disjoint with each other)

Example:
–  Let S be {a,b,c,d,e}
–  One partition: {a}, {d,e}, {b,c}
–  Another partition: {a,b,c}, ∅, {d}, {e}
–  A third: {a,b,c,d,e}
–  Not a partition: {a,b,d}, {c,d,e}
–  Not a partition of S: {a,b}, {e,c}

Winter 2014 19 CSE373: Data Structures & Algorithms

Binary relations

•  S x S is the set of all pairs of elements of S
–  Example: If S = {a,b,c}
 then S x S = {(a,a),(a,b),(a,c),(b,a),(b,b),(b,c), (c,a),(c,b),(c,c)}

•  A binary relation R on a set S is any subset of S x S
–  Write R(x,y) to mean (x,y) is “in the relation”
–  (Unary, ternary, quaternary, … relations defined similarly)

•  Examples for S = people-in-this-room
–  Sitting-next-to-each-other relation
–  First-sitting-right-of-second relation
–  Went-to-same-high-school relation
–  Same-gender-relation
–  First-is-younger-than-second relation

Winter 2014 20 CSE373: Data Structures & Algorithms

Properties of binary relations

•  A binary relation R over set S is reflexive means
R(a,a) for all a in S

•  A binary relation R over set S is symmetric means
R(a,b) if and only if R(b,a) for all a,b in S

•  A binary relation R over set S is transitive means
 If R(a,b) and R(b,c) then R(a,c) for all a,b,c in S

•  Examples for S = people-in-this-room
–  Sitting-next-to-each-other relation
–  First-sitting-right-of-second relation
–  Went-to-same-high-school relation
–  Same-gender-relation
–  First-is-younger-than-second relation

 Winter 2014 21 CSE373: Data Structures & Algorithms

Equivalence relations

•  A binary relation R is an equivalence relation if R is reflexive,
symmetric, and transitive

•  Examples
–  Same gender
–  Connected roads in the world
–  Graduated from same high school?
–  …

Winter 2014 22 CSE373: Data Structures & Algorithms

Punch-line

•  Every partition induces an equivalence relation
•  Every equivalence relation induces a partition

•  Suppose P={S1,S2,…,Sn} be a partition
–  Define R(x,y) to mean x and y are in the same Si

•  R is an equivalence relation

•  Suppose R is an equivalence relation over S
–  Consider a set of sets S1,S2,…,Sn where

(1) x and y are in the same Si if and only if R(x,y)
(2) Every x is in some Si
•  This set of sets is a partition

Winter 2014 23 CSE373: Data Structures & Algorithms

Example

•  Let S be {a,b,c,d,e}

•  One partition: {a,b,c}, {d}, {e}

•  The corresponding equivalence relation:

 (a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a), (b,c), (c,b), (d,d), (e,e)

Winter 2014 24 CSE373: Data Structures & Algorithms

The plan

•  What are disjoint sets
–  And how are they “the same thing” as equivalence relations

•  The union-find ADT for disjoint sets

•  Applications of union-find

Next lecture:

•  Basic implementation of the ADT with “up trees”

•  Optimizations that make the implementation much faster

Winter 2014 25 CSE373: Data Structures & Algorithms

The operations

•  Given an unchanging set S, create an initial partition of a set
–  Typically each item in its own subset: {a}, {b}, {c}, …
–  Give each subset a “name” by choosing a representative

element

•  Operation find takes an element of S and returns the
representative element of the subset it is in

•  Operation union takes two subsets and (permanently) makes
one larger subset
–  A different partition with one fewer set
–  Affects result of subsequent find operations
–  Choice of representative element up to implementation

Winter 2014 26 CSE373: Data Structures & Algorithms

Example

•  Let S = {1,2,3,4,5,6,7,8,9}

•  Let initial partition be (will highlight representative elements red)
{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}

•  union(2,5):
{1}, {2, 5}, {3}, {4}, {6}, {7}, {8}, {9}

•  find(4) = 4, find(2) = 2, find(5) = 2
•  union(4,6), union(2,7)

{1}, {2, 5, 7}, {3}, {4, 6}, {8}, {9}
•  find(4) = 6, find(2) = 2, find(5) = 2
•  union(2,6)

{1}, {2, 4, 5, 6, 7}, {3}, {8}, {9}

Winter 2014 27 CSE373: Data Structures & Algorithms

No other operations

•  All that can “happen” is sets get unioned
–  No “un-union” or “create new set” or …

•  As always: trade-offs – implementations will exploit this small
ADT

•  Surprisingly useful ADT: list of applications after one example
surprising one
–  But not as common as dictionaries or priority queues

Winter 2014 28 CSE373: Data Structures & Algorithms

Example application: maze-building

•  Build a random maze by erasing edges

–  Possible to get from anywhere to anywhere
•  Including “start” to “finish”

–  No loops possible without backtracking
•  After a “bad turn” have to “undo”

Winter 2014 29 CSE373: Data Structures & Algorithms

Maze building

Pick start edge and end edge

Winter 2014 30 CSE373: Data Structures & Algorithms

Start

End

Repeatedly pick random edges to delete

One approach: just keep deleting random edges until you can get
from start to finish

Winter 2014 31 CSE373: Data Structures & Algorithms

Start

End

Problems with this approach

1.  How can you tell when there is a path from start to finish?
–  We do not really have an algorithm yet

2.  We have cycles, which a “good” maze avoids
–  Want one solution and no cycles

Winter 2014 32 CSE373: Data Structures & Algorithms

Start

End

Revised approach
•  Consider edges in random order

•  But only delete them if they introduce no cycles (how? TBD)

•  When done, will have one way to get from any place to any
other place (assuming no backtracking)

•  Notice the funny-looking tree in red

Winter 2014 33 CSE373: Data Structures & Algorithms

Start

End

Cells and edges

•  Let’s number each cell
–  36 total for 6 x 6

•  An (internal) edge (x,y) is the line between cells x and y
–  60 total for 6x6: (1,2), (2,3), …, (1,7), (2,8), …

Winter 2014 34 CSE373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

The trick

•  Partition the cells into disjoint sets: “are they connected”
–  Initially every cell is in its own subset

•  If an edge would connect two different subsets:
–  then remove the edge and union the subsets
–  else leave the edge because removing it makes a cycle

Winter 2014 35 CSE373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

The algorithm

•  P = disjoint sets of connected cells, initially each cell in its own
1-element set

•  E = set of edges not yet processed, initially all (internal) edges
•  M = set of edges kept in maze (initially empty)

while P has more than one set {
–  Pick a random edge (x,y) to remove from E
–  u = find(x)
–  v = find(y)
–  if u==v
 then add (x,y) to M // same subset, do not create cycle
 else union(u,v) // do not put edge in M, connect subsets

}
Add remaining members of E to M, then output M as the maze

Winter 2014 36 CSE373: Data Structures & Algorithms

Example step

Winter 2014 37 CSE373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Pick (8,14)

P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32
 33,34,35,36}

Example step

Winter 2014 38 CSE373: Data Structures & Algorithms

P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32
 33,34,35,36}

Find(8) = 7
Find(14) = 20

Union(7,20)

P
{1,2,7,8,9,13,19,14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32
 33,34,35,36}

Add edge to M step

Winter 2014 39 CSE373: Data Structures & Algorithms

P
{1,2,7,8,9,13,19,14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32
 33,34,35,36}

Pick (19,20)

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

At the end

•  Stop when P has one set
•  Suppose green edges are already in M and black edges were

not yet picked
–  Add all black edges to M

Winter 2014 40 CSE373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

P
{1,2,3,4,5,6,7,… 36}

Other applications

•  Maze-building is:
–  Cute
–  Homework 4 J
–  A surprising use of the union-find ADT

•  Many other uses (which is why an ADT taught in CSE373):
–  Road/network/graph connectivity (will see this again)

•  “connected components” e.g., in social network
–  Partition an image by connected-pixels-of-similar-color
–  Type inference in programming languages

•  Not as common as dictionaries, queues, and stacks, but
valuable because implementations are very fast, so when
applicable can provide big improvements

Winter 2014 41 CSE373: Data Structures & Algorithms

