
CSE373: Data Structures and Algorithms

Lecture 1: Introduction; ADTs; Stacks/Queues

Aaron Bauer
Winter 2014

Welcome!

We have 10 weeks to learn fundamental data structures and
algorithms for organizing and processing information
–  “Classic” data structures / algorithms and how to analyze

rigorously their efficiency and when to use them
–  Queues, dictionaries, graphs, sorting, etc.

Today in class:
•  Introductions and course mechanics
•  What this course is about
•  Start abstract data types (ADTs), stacks, and queues

–  Largely review

Winter 2014 2 CSE373: Data Structures and Algorithms

Concise to-do list

In next 24-48 hours:
•  Adjust class email-list settings
•  Take homework 0 (worth 0 points) as Catalyst quiz
•  Read all course policies
•  Read/skim Chapters 1 and 3 of Weiss book

–  Relevant to Homework 1, due next week
–  Will start Chapter 2 fairly soon

Possibly:
•  Set up your Java environment for Homework 1

http://courses.cs.washington.edu/courses/cse373/14wi/

Winter 2014 3 CSE373: Data Structures and Algorithms

Course staff
Instructor: Aaron Bauer
TA: Iris Jianghong Shi
TA: Luyi Lu
TA: Nicholas Shahan
TA: Yuanwei Liu
TA: Rama Gokhale
TA: Shuo Wang
TA: Yunyi Song

Winter 2014 4 CSE373: Data Structures and Algorithms

Aaron: 3rd year CSE PhD grad, very excited about teaching this course
 – work with Zoran Popović and the Center for Game Science

Office hours, email, etc. on course web-page

Communication

•  Course email list: cse373a_wi14@u.washington.edu
–  Students and staff already subscribed
–  You must get announcements sent there
–  Fairly low traffic

•  Course staff: cse373-staff@cs.washington.edu plus
individual emails

•  Discussion board
–  For appropriate discussions; TAs will monitor
–  Encouraged, but won’t use for important announcements

•  Anonymous feedback link
–  For good and bad: if you don’t tell me, I don’t know

Winter 2014 5 CSE373: Data Structures and Algorithms

Course meetings

•  Lecture (Aaron)
–  Materials posted, but take notes
–  Ask questions, focus on key ideas (rarely coding details)

•  Optional meetings on Tuesday/Thursday afternoons
–  Will post rough agenda roughly a day or more in advance
–  Help on programming/tool background
–  Helpful math review and example problems
–  Again, optional but helpful
–  May cancel some later in course (experimental)

•  Office hours
–  Use them: please visit me
–  Ideally not just for homework questions (but that’s great too)

Winter 2014 6 CSE373: Data Structures and Algorithms

Course materials

•  All lecture and section materials will be posted
–  But they are visual aids, not always a complete description!
–  If you have to miss, find out what you missed

•  Textbook: Weiss 3rd Edition in Java

•  A good Java reference of your choosing?
–  Don’t struggle Googling for features you don’t understand?

Winter 2014 7 CSE373: Data Structures and Algorithms

Computer Lab

•  College of Arts & Sciences Instructional Computing Lab
–  http://depts.washington.edu/aslab/
–  Or your own machine

•  Will use Java for the programming assignments

•  Eclipse is recommended programming environment

Winter 2014 8 CSE373: Data Structures and Algorithms

Course Work
•  6 homeworks (50%)

–  Most involve programming, but also written questions
–  Higher-level concepts than “just code it up”
–  First programming assignment due week from Wednesday

•  Midterm #1 Wednesday January 29 (15%)
•  Midterm #2 Wednesday February 26 (15%)
•  Final exam: Tuesday March 18, 2:30-4:20PM (20%)

Winter 2014 9 CSE373: Data Structures and Algorithms

Collaboration and Academic Integrity

•  Read the course policy very carefully
–  Explains quite clearly how you can and cannot get/provide

help on homework and projects

•  Always explain any unconventional action on your part
–  When it happens, when you submit, not when asked

•  I take academic integrity extremely seriously
–  I offer great trust but with little sympathy for violations
–  Honest work is a vital feature of a university

Winter 2014 10 CSE373: Data Structures and Algorithms

Some details

•  You are expected to do your own work
–  Exceptions (group work), if any, will be clearly announced

•  Sharing solutions, doing work for, or accepting work from others
is cheating

•  Referring to solutions from this or other courses from previous
quarters is cheating

•  But you can learn from each other: see the policy

Winter 2014 11 CSE373: Data Structures and Algorithms

Unsolicited advice

•  Get to class on time!
–  I will start and end promptly
–  First 2 minutes are much more important than last 2!
–  Midterms will prove beyond any doubt you are able to do so

•  Learn this stuff
–  It is at the absolute core of computing and software
–  Falling behind only makes more work for you

•  This stuff is powerful and fascinating, so have fun with it!

Winter 2014 12 CSE373: Data Structures and Algorithms

Today in Class

•  Course mechanics: Did I forget anything?

•  What this course is about

•  Start abstract data types (ADTs), stacks, and queues

–  Largely review

Winter 2014 13 CSE373: Data Structures and Algorithms

Data Structures

•  Introduction to Algorithm Analysis

•  Lists, Stacks, Queues

•  Trees, Hashing, Dictionaries

•  Heaps, Priority Queues

•  Sorting

•  Disjoint Sets

•  Graph Algorithms

•  May have time for other brief exposure to topics, maybe parallelism

Winter 2014 14 CSE373: Data Structures and Algorithms

Assumed background

•  Prerequisite is CSE143

•  Topics you should have a basic understanding of:
–  Variables, conditionals, loops, methods, fundamentals of

defining classes and inheritance, arrays, single linked lists,
simple binary trees, recursion, some sorting and searching
algorithms, basic algorithm analysis (e.g., O(n) vs O(n2) and
similar things)

•  We can fill in gaps as needed, but if any topics are new, plan on
some extra studying

Winter 2014 15 CSE373: Data Structures and Algorithms

What 373 is about

•  Deeply understand the basic structures used in all software
–  Understand the data structures and their trade-offs
–  Rigorously analyze the algorithms that use them (math!)
–  Learn how to pick “the right thing for the job”
–  More thorough and rigorous take on topics introduced in

CSE143 (plus more new topics)

•  Practice design, analysis, and implementation
–  The mix of “theory” and “engineering” at the core of

computer science

•  More programming experience (as a way to learn)

Winter 2014 16 CSE373: Data Structures and Algorithms

Goals

•  Be able to make good design choices as a developer, project
manager, etc.
–  Reason in terms of the general abstractions that come up in

all non-trivial software (and many non-software) systems
•  Be able to justify and communicate your design decisions

Aaron’s take:

–  Key abstractions used almost every day in just about
anything related to computing and software

–  It is a vocabulary you are likely to internalize permanently

Winter 2014 17 CSE373: Data Structures and Algorithms

Data structures

(Often highly non-obvious) ways to organize information to enable
efficient computation over that information

A data structure supports certain operations, each with a:
–  Meaning: what does the operation do/return
–  Performance: how efficient is the operation

Examples:
–  List with operations insert and delete
–  Stack with operations push and pop

Winter 2014 18 CSE373: Data Structures and Algorithms

Trade-offs

A data structure strives to provide many useful, efficient operations

But there are unavoidable trade-offs:

–  Time vs. space
–  One operation more efficient if another less efficient
–  Generality vs. simplicity vs. performance

We ask ourselves questions like:
–  Does this support the operations I need efficiently?
–  Will it be easy to use (and reuse), implement, and debug?
–  What assumptions am I making about how my software will

be used? (E.g., more lookups or more inserts?)

Winter 2014 19 CSE373: Data Structures and Algorithms

Terminology

•  Abstract Data Type (ADT)
–  Mathematical description of a “thing” with set of operations

•  Algorithm
–  A high level, language-independent description of a step-by-

step process

•  Data structure
–  A specific organization of data and family of algorithms for

implementing an ADT

•  Implementation of a data structure
–  A specific implementation in a specific language

Winter 2014 20 CSE373: Data Structures and Algorithms

Example: Stacks

•  The Stack ADT supports operations:
–  isEmpty: have there been same number of pops as pushes
–  push: takes an item
–  pop: raises an error if empty, else returns most-recently

pushed item not yet returned by a pop
–  … (possibly more operations)

•  A Stack data structure could use a linked-list or an array or
something else, and associated algorithms for the operations

•  One implementation is in the library java.util.Stack

Winter 2014 21 CSE373: Data Structures and Algorithms

Why useful

The Stack ADT is a useful abstraction because:
•  It arises all the time in programming (e.g., see Weiss 3.6.3)

–  Recursive function calls
–  Balancing symbols (parentheses)
–  Evaluating postfix notation: 3 4 + 5 *
–  Clever: Infix ((3+4) * 5) to postfix conversion (see text)

•  We can code up a reusable library

•  We can communicate in high-level terms
–  “Use a stack and push numbers, popping for operators…”
–  Rather than, “create an array and keep indices to the…”

Winter 2014 22 CSE373: Data Structures and Algorithms

The Queue ADT

•  Operations
 create
 destroy
 enqueue
 dequeue
 is_empty

•  Just like a stack except:
–  Stack: LIFO (last-in-first-out)
–  Queue: FIFO (first-in-first-out)

•  Just as useful and ubiquitous

Winter 2014 23 CSE373: Data Structures and Algorithms

F E D C B enqueue dequeue G A

Back Front

Circular Array Queue Data Structure

Winter 2014 24 CSE373: Data Structures and Algorithms

// Basic idea only!
enqueue(x) {
 Q[back] = x;
 back = (back + 1) % size
}

// Basic idea only!
dequeue() {
 x = Q[front];
 front = (front + 1) % size;
 return x;
}

b c d e f
Q: 0 size - 1

front back

•  What if queue is empty?
–  Enqueue?
–  Dequeue?

•  What if array is full?
•  How to test for empty?
•  What is the complexity of

the operations?
•  Can you find the kth

element in the queue?

Linked List Queue Data Structure

Winter 2014 25 CSE373: Data Structures and Algorithms

b c d e f

front back

// Basic idea only!
enqueue(x) {
 back.next = new Node(x);
 back = back.next;
}

// Basic idea only!
dequeue() {
 x = front.item;
 front = front.next;
 return x;
}

•  What if queue is empty?
–  Enqueue?
–  Dequeue?

•  Can list be full?
•  How to test for empty?
•  What is the complexity of

the operations?
•  Can you find the kth

element in the queue?

Circular Array vs. Linked List

Array:
–  May waste unneeded space or

run out of space
–  Space per element excellent
–  Operations very simple / fast
–  Constant-time access to kth

element

–  For operation insertAtPosition,
must shift all later elements
–  Not in Queue ADT

List:
–  Always just enough space
–  But more space per element
–  Operations very simple / fast
–  No constant-time access to kth

element

–  For operation insertAtPosition
must traverse all earlier elements
–  Not in Queue ADT

Winter 2014 26 CSE373: Data Structures and Algorithms

This is stuff you should know after being awakened in the dark

The Stack ADT

Operations:
 create
 destroy
 push
 pop
 top
 is_empty

Can also be implemented with an array or a linked list
–  This is Homework 1!
–  Like queues, type of elements is irrelevant

Winter 2014 27 CSE373: Data Structures and Algorithms

A

B
C
D
E
F

E D C B A

F

