CSE 373 Optional Section

Luyi Lu

01/16/14
Today

- Proof by Induction
- Big-Oh
- Algorithm Analysis
Proof by Induction

Base Case:
1. Prove $P(0)$ (sometimes $P(1)$)

Inductive Hypothesis
2. Let k be an arbitrary integer ≥ 0
 3. Assume that $P(k)$ is true

Inductive Step
4. ...
5. Prove $P(k+1)$ is true
Examples

\[\sum_{i=1}^{N} i^2 = 1 + 2^2 + 3^2 + 4^2 + \cdots + n^2 = \frac{N(N+1)(2N+1)}{6} \quad \text{for all } n \geq 1 \]

\[\sum_{i=0}^{N} 2^i = 2^0 + 2^1 + 2^2 + \cdots + 2^n = 2^{n+1} - 1 \]

Extra

\[\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1} \quad \text{where } \quad n \in \mathbb{Z}^+ \]
Logarithms

• log in CS means log base of 2
• log grows very slowly
• logAB=logA+logB; log(A/B)=logA-logB
• log(N^k)= k log N
 – Eg. Log(A^2) = log(A*A) = log A + log A = 2log A
• distinguish log(log x) and log^2x --(log x)(log x)
Big-Oh

- We only look at worst case
- Big input
- Ignore constant factor and lower order terms
 - Why?
- Definition:

 \[g(n) \text{ is in } O(f(n)) \text{ if there exist constants } c \text{ and } n0 \]
 \[such \text{ that } g(n) \leq c f(n) \text{ for all } n \geq n0 \]

- Also lower bound and tight bound
We use O on a function f(n) (for example n^2) to mean the set of functions with asymptotic behavior less than or equal to f(n)
Big-Oh Practice

• Prove that $5n^2+3n$ is $O(n^2)$
 – Key point
 Find constant c and n_0
Math Related

• Series

\[\sum_{i=1}^{N} A^i = A + A^2 + A^3 + A^4 + \cdots = \frac{A^{N+1} - 1}{A - 1} \]

\[\sum_{i=1}^{N} i = 1 + 2 + 3 + 4 + \cdots = \frac{N(N + 1)}{2} \approx \frac{N^2}{2} \]

\[\sum_{i=1}^{N} i^2 = 1^2 + 2^2 + 3^2 + 4^2 + \cdots = \frac{N(N + 1)(2N + 1)}{6} \approx \frac{N^3}{3} \]

– Very useful for runtime analysis
– On your textbook, p4
How to analyze the code?

Consecutive statements Sum of times
Conditionals Time of test plus slower branch
Loops Sum of iterations
Calls Time of call’s body
Recursion Solve recurrence equation
Examples

1. int sunny (int n) {
 if (n < 10)
 return n - 1;
 else {
 return sunny (n / 2);
 }
}

2. int funny (int n, int sum) {
 for (int k = 0; k < n * n; ++k)
 for (int j = 0; j < k; j++)
 sum++;
 return sum;
}

3. int happy (int n, int sum) {
 for (int k = n; k > 0; k = k - 1) {
 for (int i = 0; i < k; i++)
 sum++;
 for (int j = n; j > 0; j--)
 sum++;
 }
 return sum;
}