CSE373 Week 3 Section Worksheet Solutions

1. Prove f(n) is O(g(n)) where
 a.
 \[f(n) = 7n \]
 \[g(n) = n/10 \]
 Solution:
 According to the definition of O(), we need to find positive real #'s \(n_0 \) & \(c \) so that
 \[f(n) \leq c \cdot g(n) \] for all \(n \geq n_0 \)
 So, set one of them, solve the equation. \(n_0 = 1 \) & \(c \geq 70 \) works.
 b.
 \[f(n) = 1000 \]
 \[g(n) = 3n^3 \]
 Solution:
 According to the definition of O(), we need to find positive real #'s \(n_0 \) & \(c \) so that
 \[f(n) \leq c \cdot g(n) \] for all \(n \geq n_0 \)
 Easiest way to do this would be to set \(n_0 = 1 \) and solve the equation. \(n_0 = 1 \) and any \(c \) from 334 and up works.
 c.
 \[f(n) = 7n^2 + 3n \]
 \[g(n) = n^4 \]
 Solution:
 According to the definition of O(), we need to find positive real #'s \(n_0 \) & \(c \) so that
 \[f(n) \leq c \cdot g(n) \] for all \(n \geq n_0 \)
 Easiest way to do this would be to set \(n_0 = 1 \) and solve the equation. We then get \(c = 10 \), and \(g \) rises more quickly than \(f \) after that. There are many more other such solutions, just make sure you plug them back in to check that they work.
 These, you could solve in a number of ways. You could also graph them and observe their behavior to find an appropriate value.
 d.
 \[f(n) = n + 2n \log n \]
 \[g(n) = n \log n \]
 Solution:
 \(n_0 = 2 \) & \(c = 3 \)
 The values we choose do depend on the base of the log; here we’ll assume base 2.
 To keep the math simple, we choose \(n_0 \) of 2. Solving the equation gets us \(c = 3 \).
 We could also use \(\log \) base 10, and we’d get \(c = 3 \), and \(n_0 = 10 \). Or \(n_0 = 2 \), \(c = 10 \).

2. True or false, & explain
 a. \(f(n) \) is \(\Theta(g(n)) \) implies \(f(n) \) is \(O(g(n)) \)
 Solution:
 True: Based on the definition of \(\Theta \), \(f(n) \) is \(O(g(n)) \)
b. $f(n)$ is $\Theta(g(n))$ implies $g(n)$ is $\Theta(f(n))$

Solution:
True: Intuitively, Θ is an equals, and so is symmetric. More specifically, we know f is $O(g)$ & f is $\Omega(g)$ so there exist positive # c, c', n_0 & n_0' such that $f(n) \leq cg(n)$ for all $n = n_0$ and $f(n) \geq c'g(n)$ for all $n = n_0'$ so $g(n) \leq f(n)/c'$ for all $n = n_0'$ and $g(n) \geq f(n)/c$ for all $n = n_0$ so g is $O(f)$ and g is $\Omega(f)$ so g is $\Theta(f)$

c. $f(n)$ is $\Omega(g(n))$ implies $f(n)$ is $O(g(n))$

Solution:
False: Counter example: $f(n) = n^2$ & $g(n) = n$; $f(n)$ is $\Omega(g(n))$, but $f(n)$ is NOT $O(g(n))$

3. Find functions $f(n)$ and $g(n)$ such that $f(n)$ is $O(g(n))$ and the constant c for the definition of $O(\)$ must be >1. That is, find f & g such that c must be greater than 1, as there is no sufficient n_0 when $c=1$.
Solution: Basically, you need to think up two functions where one is always greater than the other and never crosses, but if you multiply one of them by something, there is a crossing point where they reverse, and it will shoot up past the other function.
Consider

\[
\begin{align*}
 f(n) &= n + 1 \\
 g(n) &= n
\end{align*}
\]

we know $f(n)$ is $O(g(n))$; both run in linear time
Yet $f(n) > g(n)$ for all values of n; no n_0 we pick will help with this if we set $c=1$.
Instead, we need to pick c to be something else; say, 2.

\[
\begin{align*}
 n + 1 &< 2n \text{ for } n \geq 1
\end{align*}
\]

4. Write the $O(\)$ run-time of the functions with the following recurrence relations
a. $T(n) = 3 + T(n-1)$, where $T(0) = 1$
Solution:

\[
T(n) = 3 + 3 + T(n-2) = 3 + 3 + 3 + T(n-3) = \ldots = 3k + T(0) = 3k + 1, \text{ where } k = n,
\]
so $O(n)$ time.

b. $T(n) = 3 + T(n/2)$, where $T(1) = 1$
Solution:

\[
T(n) = 3 + 3 + T(n/4) = 3 + 3 + 3 + T(n/8) = \ldots = 3k + T(n/2^k)
\]
we want $n/2^k = 1$ (since we know what $T(1)$ is), so $k = \log_2 n$
so $T(n) = 3 \log n + 1$, so $O(\log n)$ time.
c. T(n)=3+T(n-1)+T(n-1), where T(0)=1
Solution:

We can re-write T(n) as T(n) = 3+2 T(n-1)
Then to expand T(n)
T(n) = 3 + 2 (3 + 2 T(n-2))
= 3 + 2(3 + 2 (3 + 2 T (n-3)))
= 3 + 2 (3 + 2 (3 + 2 (3 + 2 T (n-4))))
= 3 · 2^0 + 3 · 2^1 + 3 · 2^2 + ··· + 3 · 2^k-1+2^k T(0) where k is the number of iterations
= \sum_{i=0}^{k-1} 3 · 2^i + 2^k · 1
Because \sum_{i=0}^{j} m^i = m^{i+1}-1, we can replace the summation with
= 3 · (2^k - 1) + 2^k · 1
And in this case, since we know that the number of iterations that occur is just n, k=n, and so
= 4 · 2^n - 3
and we see that have T(n) = 8 · 2^n, and thus T(n) is in O(2^n).

Basically, since we can tell the # of calls to T() is doubling every time we expand it further, it runs in O(2^n) time.

5. Prove by induction that the \sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}

First, check the base case. Set n=1, and show that the right-hand side of the equation above is equal to 0^2 + 1^2.
Second, do the induction step.

\[\frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{(n+1)(2n^2 + 6n + 6) + 6(n+1)}{6} \]
\[= \frac{(n+1)(2n^2 + 7n + 6)}{6} = \frac{(n+1)(n+2)(2n+3)}{6} \]

The final expression, on the right, is the same as if we had substituted (n+1) for (n) in the original equation, and hence we have proven the equation true for the inductive case.