CSE373: Data Structures & Algorithms

Lecture 9: Priority Queues and Binary Heaps

Nicki Dell
Spring 2014
Priority Queue ADT

• A priority queue holds compare-able items
• Each item in the priority queue has a “priority” and “data”
 – In our examples, the lesser item is the one with the greater priority
 – So “priority 1” is more important than “priority 4”

• Operations:
 – insert: adds an element to the priority queue
 – deleteMin: returns and deletes the item with greatest priority
 – is_empty

• Our data structure: A binary min-heap (or binary heap or heap) has:
 – Structure property: A complete binary tree
 – Heap property: The priority of every (non-root) node is less important than the priority of its parent (Not a binary search tree)
Operations: basic idea

- **deleteMin:**
 1. Remove root node
 2. Move right-most node in last row to root to restore structure property
 3. “Percolate down” to restore heap property

- **insert:**
 1. Put new node in next position on bottom row to restore structure property
 2. “Percolate up” to restore heap property

Overall strategy:
- Preserve structure property
- Break and restore heap property
DeleteMin

Delete (and later return) value at root node
DeleteMin: Keep the Structure Property

• We now have a “hole” at the root
 – Need to fill the hole with another value

• Keep structure property: When we are done, the tree will have one less node and must still be complete

• Pick the last node on the bottom row of the tree and move it to the “hole”
DeleteMin: Restore the Heap Property

Percolate down:
• Keep comparing priority of item with both children
• If priority is less important, swap with the most important child and go down one level
• Done if both children are less important than the item or we’ve reached a leaf node

Run time?
Runtime is $O(\text{height of heap})$
$O(\log n)$
Height of a complete binary tree of n nodes = $\lceil \log_2(n) \rceil$
Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct
Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property
Insert: Restore the heap property

Percolate up:
• Put new data in new location
• If parent is less important, swap with parent, and continue
• Done if parent is more important than item or reached root

What is the running time?
Like deleteMin, worst-case time proportional to tree height: $O(\log n)$
Array Representation of Binary Trees

From node i:

- left child: $i \times 2$
- right child: $i \times 2 + 1$
- parent: $i / 2$

(wasting index 0 is convenient for the index arithmetic)

Implicit (array) implementation:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
Judging the array implementation

Plusses:
• Non-data space: just index 0 and unused space on right
 – In conventional tree representation, one edge per node (except for root), so \(n-1 \) wasted space (like linked lists)
 – Array would waste more space if tree were not complete
• Multiplying and dividing by 2 is very fast (shift operations in hardware)
• Last used position is just index \texttt{size}

Minuses:
• Same might-be-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”
This pseudocode uses ints. In real use, you will have data nodes with priorities.

Pseudocode: insert into binary heap

```
void insert(int val) {
    if (size == arr.length-1)
        resize();
    size++;
    i = percolateUp(size, val);
    arr[i] = val;
}

int percolateUp(int hole, int val) {
    while (hole > 1 && val < arr[hole/2])
        arr[hole] = arr[hole/2];
        hole = hole / 2;
    return hole;
}
```
Pseudocode: deleteMin from binary heap

```cpp
int deleteMin() {
    if(isEmpty()) throw...
    ans = arr[1];
    hole = percolateDown(1,arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}

int percolateDown(int hole, int val) {
    while(2*hole <= size) {
        left = 2*hole;
        right = left + 1;
        if(right > size || arr[left] < arr[right])
            target = left;
        else
            target = right;
        if(arr[target] < val) {
            arr[hole] = arr[target];
            hole = target;
        } else
            break;
    }
    return hole;
}
```

```
<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>80</th>
<th>40</th>
<th>60</th>
<th>85</th>
<th>99</th>
<th>700</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
```

Spring 2014

CSE 373
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

```
16
0  1  2  3  4  5  6  7
```

![Binary heap structure](image)
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

```
  16  32
  0  1  2  3  4  5  6  7
```

```
  16
 /   \
32   16
```

```
  32
 /   \
  16
 /   \
  16
```
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

```
<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>32</th>
<th>16</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
```

```
4
  / 
32  16
 /   /
/     /
/       /
64  128 256
```
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>32</th>
<th>16</th>
<th>67</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
  4
 / 
32 16
 |
67
```
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin
Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>32</th>
<th>4</th>
<th>67</th>
<th>105</th>
<th>43</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

```
  2
 / \
32 4
 / \
67 105 43 16
```
Other operations

- **decreaseKey**: given pointer to object in priority queue (e.g., its array index), lower its priority value by p
 - Change priority and percolate up

- **increaseKey**: given pointer to object in priority queue (e.g., its array index), raise its priority value by p
 - Change priority and percolate down

- **remove**: given pointer to object in priority queue (e.g., its array index), remove it from the queue
 - **decreaseKey** with $p = \infty$, then **deleteMin**

Running time for all these operations?
Build Heap

- Suppose you have n items to put in a new (empty) priority queue
 - Call this operation `buildHeap`

- n inserts works
 - Only choice if ADT doesn’t provide `buildHeap` explicitly
 - $O(n \log n)$

- Why would an ADT provide this unnecessary operation?
 - Convenience
 - Efficiency: an $O(n)$ algorithm called Floyd’s Method
 - Common issue in ADT design: how many specialized operations
Floyd’s Method

1. Use n items to make any complete tree you want
 - That is, put them in array indices $1, \ldots, n$

2. Treat it as a heap and fix the heap-order property
 - Bottom-up: leaves are already in heap order, work up toward the root one level at a time

```c
void buildHeap() {
    for (i = size/2; i > 0; i--)
    {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```
Example

- In tree form for readability
 - Purple for node not less than descendants
 - heap-order problem
 - Notice no leaves are purple
 - Check/fix each non-leaf bottom-up (6 steps here)
Example

- Happens to already be less than children (er, child)
Example

- Percolate down (notice that moves 1 up)
Example

- Another nothing-to-do step
Example

- Percolate down as necessary (steps 4a and 4b)
Example

Step 5
Example

```
        1
       / \  
      3   5  
     / \    
    4   8   10
     \   \  
      7   11
```

```
        1
       / \  
      2   3  
     /     
    9     6
```

```
        1
       / \  
      4   5  
     /     
    12   11
```

```
        1
       / \  
      2   3  
     /     
    10   7
```

```
        1
       / \  
      2   3  
     /     
    10   11
```

```
        1
       / \  
      2   3  
     /     
    10   7
```

```
        1
       / \  
      2   3  
     /     
    10   7
```

Step 6

```
        1
       / \  
      2   3  
     /     
    10   7
```

```
        1
       / \  
      2   3  
     /     
    10   7
```

```
        1
       / \  
      2   3  
     /     
    10   7
```

```
        1
       / \  
      2   3  
     /     
    10   7
```

```
        1
       / \  
      2   3  
     /     
    10   7
```

```
        1
       / \  
      2   3  
     /     
    10   7
```

```
        1
       / \  
      2   3  
     /     
    10   7
```

```
        1
       / \  
      2   3  
     /     
    10   7
```
But is it right?

• “Seems to work”
 – Let’s prove it restores the heap property (correctness)
 – Then let’s prove its running time (efficiency)

```c
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```
Correctness

Loop Invariant: For all \(j > i \), \(\text{arr}[j] \) is less than its children

- True initially: If \(j > \text{size}/2 \), then \(j \) is a leaf
 - Otherwise its left child would be at position \(> \text{size} \)
- True after one more iteration: loop body and \text{percolateDown} make \(\text{arr}[i] \) less than children without breaking the property for any descendants

So after the loop finishes, all nodes are less than their children
Efficiency

```java
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Easy argument: **buildHeap** is $O(n \log n)$ where n is **size**

- **size/2** loop iterations
- Each iteration does one **percolateDown**, each is $O(\log n)$

This is correct, but there is a more precise ("tighter") analysis of the algorithm…
Efficiency

void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}

Better argument: buildHeap is $O(n)$ where n is size

- $size/2$ total loop iterations: $O(n)$
- 1/2 the loop iterations percolate at most 1 step
- 1/4 the loop iterations percolate at most 2 steps
- 1/8 the loop iterations percolate at most 3 steps
- ...
- $((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) < 2$ (page 4 of Weiss)
 - So at most $2(size/2)$ total percolate steps: $O(n)$
Lessons from \texttt{buildHeap}

- Without \texttt{buildHeap}, our ADT already let clients implement their own in $O(n \log n)$ worst case

- By providing a specialized operation internal to the data structure (with access to the internal data), we can do $O(n)$ worst case
 - Intuition: Most data is near a leaf, so better to percolate down

- Can analyze this algorithm for:
 - Correctness:
 - Non-trivial inductive proof using loop invariant
 - Efficiency:
 - First analysis easily proved it was $O(n \log n)$
 - Tighter analysis shows same algorithm is $O(n)$
Other branching factors

- d-heaps: have d children instead of 2
 - Makes heaps shallower, useful for heaps too big for memory (or cache)

- Homework: Implement a 3-heap
 - Just have three children instead of 2
 - Still use an array with all positions from 1…heap-size used

<table>
<thead>
<tr>
<th>Index</th>
<th>Children Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,3,4</td>
</tr>
<tr>
<td>2</td>
<td>5,6,7</td>
</tr>
<tr>
<td>3</td>
<td>8,9,10</td>
</tr>
<tr>
<td>4</td>
<td>11,12,13</td>
</tr>
<tr>
<td>5</td>
<td>14,15,16</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>